Bharatiya Vidya Bhavan's

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai -400058

Program: B. Tech. in Civil Engineering
Course Code: PC-BTC402
Course Name: Structural Mechanics

Duration: 3 Hours
Maximum Points: 100

1. Attempt any FIVE questions out of SEVEN questions.

Semester: IV

2. Answers to all sub questions should be grouped together.
3. Figures to the right indicate full marks.
4. Assume suitable data if necessary and state the same clearly.

End Semester Examinations: Hume 2022

Q.2(a)	Write the expression for strain energy stored in a member due to (i) Shear force (ii) Twisting Moment Explain the terms involved in each expression	05	2	2	1.3.1
Q.2(b)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD \& BMD	15	2	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.3(a)	Find the slope and vertical deflection at the free end C for the beam supported and loaded as shown in figure below. Use conjugate method only.	10	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.3(b)	Find the slope and vertical deflection at C for the beam supported and loaded as shown in figure below. Use moment area method only.	10	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai-400058
End Semester Examinations: June 2022

Q.4(a)	For the pin jointed frame loaded as shown in figure below, find the horizontal deflection of joint E.	12	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.4(b)	Determine the horizontal deflection of point C of the rigid jointed frame loaded as shown in figure below.	8	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.5(a)	Using Macaulay's method only, find the slope and vertical deflection at D for the beam supported and loaded as shown in figure below.	10	3	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$
Q.5(b)	Find the strain energy stored due to bending moment only for the beam loaded as shown in the figure below.	10	2	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$

Q.6(a)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD \& BMD for members AB and BC only	10	4	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$
Q.6(b)	Find the crippling loads using (i) Euler's and (ii) Rankine's formulae for a steel column 3.0 m long with both ends hinged. The cross section of the column is a symmetrical I section with the following dimensions. Top and bottom Flange width $=\mathbf{2 5 0} \mathbf{~ m m}$, Top and bottom Flange thickness $=25 \mathrm{~mm}$, Depth of web $=\mathbf{3 0 0} \mathrm{mm}$, Thickness of web $\mathbf{= 3 0} \mathbf{~ m m}$. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{f}_{\mathrm{c}}=350 \mathrm{MPa}$ and Rankine's constant $=1 / 7000$.	10	4	3,4	1.1.1 1.3.1 2.4.1
Q.7(a)	(i) Name the methods of finding deflection in trusses.	02	3	2	1.3 .1
	(ii) State and explain Bette's theorem.	05	2	2	1.3.1
	(iii) Nam the factors which determine the Euler's buckling load of a member subjected to an axial force?	03	4	2	1.3 .1
Q.7(b)	Locate the principal axes and find the principal moments of inertia for the angle section shown in figure below.	10	1	3,4	$\begin{aligned} & \hline 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \\ & \hline \end{aligned}$

$$
\begin{aligned}
& \text { End Semester Examinations: May } 2022
\end{aligned}
$$

Program: B.Tech. in Civil Engineering

Course Code: PC-BTC402
Maximum Points: 100
Course Name: Structural Mechanics
Semester: IV

1. Attempt any FIVE questions out of SEVEN questions.
2. Answers to all sub questions should be grouped together.
3. Figures to the right indicate full marks.
4. Assume suitable data if necessary and state the same clearly.

End Semester Examinations: May 2022

Q.2(b)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD \& BMD	15	2	3,4	1.3.1 2.1.3
Q.3(a)	Find the slope and vertical deflection at the free end B for the beam supported and loaded as shown in figure below. Use conjugate method only.	10	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.3(b)	Find the slope and vertical deflection at C for the beam supported and loaded as shown in figure below. Use moment area method only.	10	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$

End Semester Examinations: May 2022

Q.4(a)	For the pin jointed frame loaded as shown in figure below, find the vertical deflection of joint A.	10	3	3,4	1.3 .1 2.1.3
Q.4(b)	Determine the horizontal deflection of point D of the rigid jointed frame loaded as shown in figure below.	10	3	3,4	$\begin{aligned} & \hline 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.5(a)	Using Macaulay's method only, find the slope and vertical deflection at D for the beam supported and loaded as shown in figure below.	10	3	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$
Q.5(b)	Find the strain energy stored due to bending moment only for the beam loaded as shown in the figure below.	10	2	3,4	$\begin{aligned} & \hline 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examinations: May 2022

End Semester Examinations: May 2022
Program: B.Tech. in Civil Engineering J.4.3, Tech Course Code: PC-BTC402

Course Name: Structural Mechanics

Maximum Points: 100
Semester: IV

1. Attempt any FIVE questions out of SEVEN questions.
2. Answers to all sub questions should be grouped together.
3. Figures to the right indicate full marks.
4. Assume suitable data if necessary and state the same clearly.

End Semester Examinations: May 2022

Q.2(b)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD \& BMD	15	2	3,4	1.3 .1 2.1.3
Q.3(a)	Find the slope and vertical deflection at the free end B for the beam supported and loaded as shown in figure below. Use conjugate method only.	10	3	3,4	$\begin{array}{\|l\|} \hline 1.3 .1 \\ 2.1 .3 \\ \hline \end{array}$
Q.3(b)	Find the slope and vertical deflection at \mathbf{C} for the beam supported and loaded as shown in figure below. Use moment area method only.	10	3	3,4	$\begin{aligned} & \hline 1.3 .1 \\ & 2.1 .3 \end{aligned}$

End Semester Examinations: May 2022

Q.4(a)	For the pin jointed frame loaded as shown in figure below, find the vertical deflection of joint A.	10	3	3,4	1.3 .1 2.1.3
	Petermine the hortzomai denection or point D or the rigid jointed frame loaded as shown in figure below.	10	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.5(a)	Using Macaulav's method only, find the slope and vertical deflection at D for the beam supported and loaded as shown in figure below.	10	3	3,4	$\begin{array}{\|l\|} \hline 1.1 .1 \\ 1.3 .1 \\ 2.4 .1 \\ \hline \end{array}$
Q.5(b)	Find the strain energy stored due to bending moment only for the beam loaded as shown in the figure below.	10	2	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$

Re-Exam End Semester Examinations: July 2022

Program: B.Tech. in Civil Engineering

Course Code: PC-BTC402

Course Name: Structural Mechanics

1. Attempt any FIVE questions out of SEVEN questions.

Maximum Points: 100

Semester: IV
817122.
2. Answers to all sub questions should be grouped together.
3. Figures to the right indicate full marks.
4. Assume suitable data if necessary and state the same clearly.

Q.No.	Questions	Points	CO	BL	PI
Q.1(a)	A 15 m high masonry dam of trapezoidal cross section has the top and bottom widths of 2 m and 5 m respectively as shown in figure below. The dam retains water on its vertical face to a depth of 15 m . Determine the maximum and minimum stresses developed at the base of the dam. The unit weight of masonry is $20 \mathrm{kN} / \mathrm{m}^{3}$ and that of water is $10 \mathrm{kN} / \mathrm{m}^{3}$.	10	1	4	$\begin{aligned} & 1.1 .1 \\ & \text { 1.3.1 } \\ & 2.4 .1 \end{aligned}$
Q.1(b)	A rectangular cross section of width 230 mm and depth $\mathbf{4 0 0} \mathrm{mm}$ is subjected to a bending moment of $70 \mathrm{kN}-\mathrm{m}$ at 70 degrees to the negative \mathbf{X} axis as shown in the figure below. Find the location of the neutral axis and show it in the cross section. Find the maximum and minimum bending stresses and state their location in the cross section.	10	1	4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$
	Cross section				

Re Exam End Semester Examinations: July 2022

(Government Aided Autonomous Institute)
Munshi Nagar, Andlheri (W) Mumbai - 400058
Re-Exam End Semester Examinations: July 2022

Re-Exam - End Semester Examinations: July 2022

Bharatiya Vidya Bhavan＇s
SARDAR PATEL COLLEGE OF ENGINEERING
（Government Aided Autonomous Institute） Munshi Nagar，Andhen（W）Mumbai－ 400058
End Semester Direct Second Year－July 2022 Examinations

Program：B．Tech．Civil Engineering
 Course Code：PE－BTC404
 Course Name：Surveying \＆Geomatics

Notes：

Duration：3hrs．
Maximum Points： 100
Semester：IV

1．There are TOTAL SEVEN MAIN questions，each of 20 points． QUESTION 1 is COMPULSORY．
3．From the remaining SIX Questions Solve ANY FOUR．
4．Assume suitable data，wherever necessary and State it clearly．
5．Write answer to each question on a new page．
6．Answers to be accompanied with appropriate sketches／facts \＆figures／table or chart／graph／diagram／flowchart wherever necessary or required．

Bharatiya Vidya Bhavan's
SARDAR Patel college of engineering
(Goverament Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

Ind Semester Direct Second Year - July 2022 Examinations

The End .----

Program: B. Tech. Civil Engineering S.Y. B. Tech (Ci i't Duration: 3hrs. Lem^{23}

Course Code: PE-BTC404
Course Name: Surveying \& Geomatics

Notes:

1. There are TOTAL SEVEN MAIN questions, each of $\mathbf{2 0}$ points.
2. QUESTION 1 is COMPULSORY.
3. From the remaining SIX Questions Solve ANY FOUR.
4. Assume suitable data, wherever necessary and State it clearly.
5. Write answer to each question on a new page.
6. Answers to be accompanied with appropriate sketches/facts \& figures/table or chart/graph/diagram/flowchart wherever necessary or required.

Q.No.	Questions						Points	CO	BL	PI
1.	Answer the following: (2 marks each)									
	1. Differentiate between Triangulation and Trilateration (only 2 points) 2. Define: Principal Point and Nadir 3. Distinguish between Metric and Interpretive aerial photogrammetry (only 2 points) 4. Differentiate between Internal focusing and external focusing theodolite 5. Define Super-elevation and give the formula for finding superelevation. 6. State the basic principle of positioning in GPS. State the two types of position fixing in a GPS. 7. Define: a) Tides b) Sounding 8. State the two methods of EDM. Give the relationship between wavelength and frequency. 9. Differentiate between Active \& Passive Remote sensing 10. Give the elements of Reverse curve - when the straights are nonparallel.						20	1,2,3	4 4 1 1 1 1 1 4 1	1.1.1
$2 . A$	Given the data as shown here:						10	1,3	3	1.1.2
	Inst. stn	Staff stn	Line	Bearing	Vertical angle	Stadia readings				
	0	A	OA	$84^{\circ} 36^{\prime}$	$3^{\circ} 30^{\prime}$	1.35, 2.10, 2.85				
	O	B	OB	$142^{\circ} 24^{\prime}$	$2^{\circ} 45^{\prime}$	1.955	.875, 3.7			
	Find the distance between stations A \& B and the gradient between stations A \& B. Staff held normal at both the stations									
$2 . B$	For the circular curve to be provided on a railway line, a transition curve is to be provided at its both ends. Following data is available: Radius of circular curve -300 m Rail gauge - 1.5 m Super-elevation- 15 cm Rate of change of radial acceleration $-0.3 \mathrm{~m} / \mathrm{s}^{3}$						5	2,3	3	1.1.2

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester May 2022 Examinations

	Design: Design speed of the vehicle (1), Length of the transition (2) curve, Spiral angle (1) and Shift (1) of the transition curve6				
2.C	Draw a neat sketch and show the range line, sounding points and shore line (2) State the essential points to be considered while planning the sounding points. (3)	5	1,3	1 2	1.1.1
3.A	a) Explain, with the help of a neat sketch, the 'Tangent Correction method' of setting out Vertical curve. (4) b) Calculate the chainages of the tangent point and the apex of the vertical curve connecting two grades of $+0.6 \%$ and -0.9%. The chainages and the RL of intersection point are 985.5 m and 1430 m respectively. The rate of change of grade for the curve is 0.75% per 30 m . (6)	10	1,3	3	1.1.2
3.B	State and explain various errors in stadia measurement in a tacheometric survey.	5	1,3	2	1.1.1
3.C	Give the importance of setting out works with an appropriate example. (3) State the prerequisites for locating a new structure w.r.t the permanent structures. (2)	5	1,2	1 2	1.1.1
4.A	Classify (in detail) the aerial photographs on the basis of alignment of optical axis.	8	1,3	2	5.1.1
4.B	State various figures of triangulation (1). With neat sketches, explain the figures (5).	6	1,3	1	1.1.1
4.C	Explain where and how the Echo sounding machine / Fathometer is used to measure the depth of the water in a water body. (4) Give the advantages of using the echo sounding machine Fathometer. (2)	6	1,3	2	5.1.1
5.A	Explain 'Stereoscopic parallax' (4) and explain how absolute and differential parallax can be used to obtain the height of the object (4).	8	1,3	2	1.1.1
5.B	State the characteristics of Electromagnetic (EM) waves.	4	1,3	1	5.1.1
5.C	Explain the basic procedure for setting out the foundation of a structure on a given site as per the plans.	8	1,2	2	1.1.1
$6 . A$	State and explain different types of Image interpretation (3). State various elements of lmage interpretation (2) and explain any one element of interpretation with an appropriate example (3).	8	1,3	2	5.1.1
6.B	State and explain the criteria for selection of figure for triangulation survey.	6	1,3	2	1.1.1
6.C	With neat sketches, explain the method of sounding: i) By range and one angle from boat (3) ii) By two angles from shore (3)	6	1,3	2	5.1.1
7.A	i) Aerial photographs were taken with a camera having a focal length of 180 mm . the average elevation of the ground in the photograph was	8	1,3	3	5.1.1

Page 2 of 3

End Semester May 2022 Examinations

	l60m. Find: a) scale of the map if the flying height was $2500 \mathrm{~m} .(2)$ b) the flying height required to have a photo scale of $1 \mathrm{in} 6000 .(2)$ ii) Find the number of photographs required of size $250 \mathrm{~mm} \times 250 \mathrm{~mm}$ to cover an area of $20 \mathrm{~km} \times 16 \mathrm{~km}$, if the longitudinal overlap is 60% and the side overlap is 30%. Scale of the photograph is $1 \mathrm{~cm}-150 \mathrm{~m} .(4)$			
7.B	Give the difference between Electronic theodolite, EDM and Total station. (atleast 4 points)	4	1,3	4
7.C	Explain the method of achieving horizontal and vertical control in setting out works.	8	1,2	2

The End
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester July 2022 Examinations

Program: B. Tech. Civil Engineering
Course Code: PE-BTC404
Course Name: Surveying \& Geomatics

Notes:

1. There are TOTAL SEVEN MAIN questions, each of $\mathbf{2 0}$ points.
2. QUESTION 1 is COMPULSORY.
3. From the remaining SIX Questions Solve ANY FOUR.
4. Assume suitable data, wherever necessary and State it clearly.
5. Write answer to each question on a new page.
6. Answers to be accompanied with appropriate sketches/facts \& figures/table or chart/graph/diagram/flowchart wherever necessary or required.

Q.No.	Questions	Points	CO	BL	PI
1.	Answer the following: (2 marks each)				
	1. With neat sketches, define Triangulation and Trilateration. 2. Define: stereoscopic parallax 3. Distinguish between true vertical, vertical and tilted photographs 4. Differentiate between Stadia method and Non-stadia method of tacheometric measurements. 5. Define Super elevation and Sight distance, with neat sketches. 6. With neat sketches, differentiate between static single point and static relative positioning. 7. State the advantages of using total station for a land survey. 8. Explain, in short, Electromagnetic radiation spectrum. 9. State different types of resolutions in a remote sensing system. 10. Give the elements of horizontal simple circular curve, with a neat sketch.	20	1,2,3	1,4	1.1.1
2.A	A tacheometer was setup at a station P and the readings on a vertically held staff at Q were $2.255,2.605,2.955$, the line of sight being inclined at $+8^{\circ} 24^{\prime}$. Another observation on the vertically held staff at benchmark (B.M.) gave the readings 1.640, 1.920 and 2.200, the inclination of the line of sight being $+1^{\circ} 6^{\prime}$. Draw neat sketch of the profile (2) and calculate: 1. Horizontal distance between P and $Q(3)$. 2. Elevation of Q if the R.L. of B.M. is 418.685 m (5). Take the tacheometric constants as 100 and 0.3 .	10	1,3	3	1.1.2
2.B	Two tangents intersect at chainage 1192 m , the deflection angle being $50^{\circ} 30^{\prime}$. Calculate the necessary data for setting out a curve of 15 chains by offsets from chord. Take peg interval equal to one chain. The length of the chain is equal to 20 m .	5	2,3	3	1.1.2
2.C	State various methods of locating the soundings (2). Explain with a neat sketch the method of sounding location by Crossrope (3).	5	1,3	1	1.1.1

Page 1 of 3

3.A	A road bend which deflects 800 is to be designed for a maximum speed of 100 kmph , a maximum centrifugal ratio of $1 / 4$ and a maximum rate to the change of acceleration of $30 \mathrm{~cm} / \mathrm{sec} 3$, the curve consisting of a circular arc combined with two cubic spirals. Calculate 1) Radius of the circular arc (2), 2) Required length of transition curve (1), 3) Total length of combined, circular and transition, curve (3), and 4) Chainages of the start and end of the transition curves, and of the junction of the transition curves with the circular arc, if the chainage of the point of intersection is 42862 m (4).	10	1,3	3	1.1.2
$3 . B$	State the principle of stadia method (1). Explain the procedure for finding the tacheometric constants (4).	5	1,3	1 2	1.1.1
3.C	Explain how horizontal control and vertical control is important for setting out works.	5	1,2	2	1.1.1
4.A	Explain with a neat sketch how the scale of vertical photograph can be determined (4). Give the steps for Computation of a flight plan for aerial photography (4).	8	1,3	2	5.1.1
4.B	State the purpose of 'Triangulation survey' (3). Classify the triangulation methods (3).	6	1,3	1	1.1.1
4.C	Write a note on "Use of Shore signals and Buoys for taking the sounding".	6	1,3	2	5.1.1
5.A	Explain with a neat sketch: (any two) 1. Stereoscopic view (4) 2. Relief displacement (4) 3. Crab and Drift (4)	8	1,3	2	1.1.1
5.B	State and explain various remote sensing platforms (6). State the basic requirements of an ideal remote sensing system (4). Explain how a real remote sensing system differs from an ideal remote sensing svstem (2).	12	1,3	1 1 2	5.1.1
6.4	Define 'Image interpretation' (2). State the fundamentals of image interpretation (2). Give the elements of image interpretation (2). Give some applications of image interpretation (2).	8	1,3	1	5.1.1
6.B	Explain 'Baseline measurement for triangulation survey' (2). State the factors for selection of baseline (2). Give the methods for baseline measurement (2).	6	1,3	2	1.1.1
6.C	Explain how a tide gauge is used to determine the exact water surface level. (4) Explain any one non-registering / self-registering tide gauge (2).	6	1,3	2	5.1.1
7.A	The scale of an aerial photography is $1 \mathrm{~cm}=100 \mathrm{~m}$. the photograph size is $200 \mathrm{~mm} \times 200 \mathrm{~mm}$. Determine the number of photographs required to: 1. Cover and area of $100 \mathrm{sq} . \mathrm{km}$ if the longitudinal lap is 60%	8	1,3	3	5.1.1

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester July 2022 Examinations

	and side lap is 30% (3). 2.Cover and area of $10 \mathrm{~km} \times 10 \mathrm{~km}$ if the longitudinal lap is 60% and side lap is $30 \%(3)$. Is the answer for both 1 and 2 same? If not why? (2) 7.BWrite a note on 'Auto reduction tacheometer'.	4	1,3	4	5.1 .1
7.C	Explain with a neat sketch any one method to transfer the levels from the surface to underground.	8	1,2	2	1.1 .1

D. S. Y. Breach (civil) Sem

ENDSEM- EXAMINATION (DSY) JUNE-2022
Duration: 03 Hours
Program: CIVIL
Maximum Points: 100
Semester: IV
417122

- Attempt any five out of seven questions
- Use of scientific non-programmable calculator is allowed.

ENDSEM- EXAMINATION (DSY) JUNE-2022

ENDSEM- EXAMINATION (DSSY) JUNE-2022

	X	10	12	18	18	15	40						
	Y	12	18	25	25	50	25						
QV a)	Fit a binomia the theoretical	distr 	$\begin{aligned} & i^{i b u t i} \\ & \text { uenci } \\ & \hline 14 \\ & \hline 14 \end{aligned}$	$\begin{aligned} & \text { ion for } \\ & \text { ies wit } \\ & \begin{array}{\|c} 2 \\ \hline 20 \end{array} \end{aligned}$	$\begin{aligned} & \text { he fo } \\ & \text { the } \\ & \frac{3}{34} \\ & \hline \end{aligned}$	actual 22	$\begin{gathered} \frac{1 \mathrm{~g} \text { dat }}{\text { ones: }} \\ \frac{5}{8} \end{gathered}$		mpare	10	1	1	2.3.1
QV b)	In an experim following res Use Chi squa preventing tu			muniz btain Affec 267 757 determ	ation d. ed ne th	of cat effic	e fro	tube Not af 27 155 vacci	culosis the ected in	10	3	2	1.1.1
QVI a)	10 workers workers in certain day a In the light the mean of 58 ?			ed at the no be 5 , wou of	rand of it , 52, d it ems	m fr ems 53,5 be app produ		large ed by 57, 58 te to the p	number of them on a $59,59,60$. aggest that pulation is	10	2	1	1.1.3
QVI b)	A die is thro $\begin{array}{l}\text { No appe } \\ \text { die }\end{array}$ Frequency Show that th	wn 2 \qquad die		$\begin{aligned} & \frac{\text { mes wi }}{1} \\ & \hline 40 \\ & \hline \text { ased } \end{aligned}$	2	follo 3 28	$\begin{aligned} & \frac{\operatorname{ving} r}{4} \\ & \frac{50}{} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { esults } \\ \hline 54 \\ \hline \end{array}$	6 60	10	1	3	2.1.3
$\begin{aligned} & \text { QVI } \\ & \text { I a) } \end{aligned}$	Fit a Poisson $\begin{aligned} & \mathrm{X} \\ & \mathrm{f} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{0}{12 s t r} \\ \hline 123 \end{array}$	$\begin{aligned} & \text { utic } \\ & \hline \frac{1}{59} \\ & \hline \end{aligned}$	on for 2	he fo	$\begin{aligned} & \text { lowi } \\ & \hline \end{aligned}$	dis	butio		10	3	3	2.1.4
$\begin{aligned} & \text { QVI } \\ & \text { Ib) } \end{aligned}$	The local au lamps in the 1000 burning number of 1 i) ii) between	horit stree hou mps first 	s in of wi might 800 1200	a cert he cit th a st be ex hours hour	ain cit If th ndard pected ?	y ins ese la d devi d to f	alled pps h tion 1		electric age life of ours, what	10	3	2	1.1.3

9 ${ }^{\text {c }}$＇ Z	¢z¢ 乙	096.1	St9＇	て8で	∞
L19\％	$89 \underbrace{\circ} \mathrm{Z}$	086.	859.	$68 \mathrm{C}^{\prime}$	021
0992	06ε \％	000 乙	129＇1	962＇	09
＋02＇z	とででて	$120{ }^{\circ}$	＋89\％	$\varepsilon 0 \varepsilon \cdot$	$0{ }^{\circ}$
0sLz	LStて	でO\％	L68．	OLE！	Oع
99L	29\％${ }^{\text {2 }}$	9r0\％	689.1	いど，	62
ع9L＇z	L9t＇	8ャ0 2	102．	عاع＇	82
1くLC	とんがて	250＇z	802\％	\downarrow じし	$\angle 2$
6LL＇Z	6くガて	$990{ }^{\circ} \mathrm{Z}$	902＇1	SiEt	92
L8でて	98ャて	$090 \cdot 2$	802\％	$918 \cdot$	sz
L6L＇Z	26\％＇z	＋90＇z	WL゙し	8181	ャ乙
L08＇z	009%	690 Z	－以く！	$618 \cdot$	£
6182	$80{ }^{\text {c }} \mathrm{C}$	－ 20.2	LLCL	เฉع＇し	22
168 Z	8Ls＇z	$080 \cdot$ 乙	12L＇	とてと！	12
968 ${ }^{\text {\％}}$	82s ${ }^{\text {\％}}$	$980^{\circ} \mathrm{Z}$	selit	¢てE＇	02
$198{ }^{\text {\％}}$	6¢S＇z	ع60＇z	62L＇1	8 8と 1	61
848＇z	2ss ${ }^{\text {z }}$	101%	\downarrow ¢ ¢	0 Oと＇।	81
$868{ }^{\text {8 }}$	L99＇ぐ	0112		عと๕＊	$\angle 1$
126.2	E8S＇z	0てL＇z	$9 \downarrow<1$	LEE＊	91
Lャ6 ${ }^{\text {c }}$	209： 2	181\％	ESL＇L	เセE゙し	G1
$\angle \angle 6 \%$	－292	9＋1\％	192．	Ster	カ
210＇E	099＇z	0912	12L＇	OSE \downarrow	El
S $90^{\circ} \mathrm{E}$	$189 \cdot$ \％	6L1．	C8L1	$998 \cdot$	てı
$901{ }^{\circ} \mathrm{E}$	81くて	102＇z	96L \downarrow	¢9E！	11
$69 \cdot \mathrm{E}$	ャ9L゙Z	82て＇乙	2181	こんEと	01
09\％＇	128 \％	こので乙	ع¢8＇	¢8E＇	6
sce＇e	968 ＇Z	908 ¢	0981	L6と＇し	8
$66 \rightarrow$ ¢	866 ＇ 2	S9E＇乙	968．1	Stri	1
LOL＇ \mathcal{L}		くローでて	Et6 ${ }^{\text {！}}$	0カガ！	9
2¢0＇\downarrow	S98E	129＇z	Storz	9＜t＇	s
－09＇t	L \downarrow L＇$¢$	9LC＇z	ことして	と¢S＇レ	ゅ
$1+9 \mathrm{~S}$	しtS＇t	281＇$¢$	¢se＇z	$88^{\circ} \mathrm{L}$	ε
926．6	596.9	عоع＇ヶ	086\％	$988 \cdot$	2
$\angle 59.89$	21918	902\％	ヤع゙9	$8 \angle 0 \cdot ¢$	1
100	200	90°	01.0	00°	

268.09	z96．\angle	ELLE	992＇0b	98E62	86ヶ 81	ES6＇tl	0ε
8896	ع69．9t	29c゙で	L80．6E	9Eと＇8z	802 41	99でか	62
8LZ＇8t	$61+96$	LEE＇し	916.18	98E L \angle	826.91	999＇Et	82
ع90．9b	0カじ㠶	Eい＇0t	けてく＇9E	98E9Z	19191	6L8 21	$\angle 2$
2t9＇st	998．17	988＇8E	E9¢ 9ε	9ะと．ร	6LEG	861 こ！	92
カレどか	993 4 （t	298 $2 ¢$		Lとどヤて	$119 \downarrow 1$	ャてS 16	¢2
086 で	02\％ 0 －	Slt＇98	961 Z¢	Lع¢ $¢ 乙$	8ャ8．と	99801	ゅて
8 ¢9 しb	896 8 8	2L1＇98	L00てを	LEE＇ટ己	160 ¢ 1	96101	¢Z
682＇0b	699.2ε		ع1808	くどレて	8モ¢＇己।	てヤS 6	乙Z
286 8 ¢	6ヶ¢98	$1 \angle 9 '$ ¢	91962	LEEOZ	16914	1688	12
$995<\varepsilon$	020 98	01ローと	21ロ＊8	$\angle 8 \varepsilon 61$	15801	09で8	02
16198	L89 ${ }^{\circ} \mathrm{C}$ ¢	什し0¢	ャロでくて	$88 \varepsilon 81$	$\angle 1101$	ع¢9 $<$	61
$908{ }^{\circ} \mathrm{t}$	9ャを そ¢	698．82	686．gz	8EE $\angle 1$	06E6	910 1	81
60ヶ＇と¢	S66．0ع	L89 L 2	692 ヶ七	88¢ 91	2L98	80ャ9	41
000 乙ع	ع¢9＇6z	962＇92	てヤS＇とて		2961	2189	91
8L9 0¢	692．8z	968 ¢ ${ }^{\text {¢ }}$	L0ع zz	6Eどャレ	192L	6こで ${ }^{\text {b }}$	91
しゃじ6て	عL8＇9z	589 ¢ $¢$	＋901して	68¢とا	1259	099 ＇t	カ1．
889 LZ		29¢ 乙乙	21861	Obを 21	268 ¢	LOL＇t	El
くしで92	bSO＇tz	920 して	6 TG 81	ODE い	9てZ 9	LLGE	21
¢ 52 ヤく	819＇zz	9 29.61	SLでくI	じとOレ	SLS＇\downarrow	eso e	1
602 Ez	191．して	L08．81	$\angle 86 \mathrm{Sl}$	OヤE6	0 ± 6 ¢	8 Sc ？	0.
999 Lz	6＜9＇61	616．91	『89゙ャ1	¢昛8	¢LEE	880 ？	6
06002	891.81	LOS＇St	298．${ }^{\text {¢ }}$		¢ $¢$ L＇乙	9ャ9－	8
S 2781	ट2991	L90＇bl	2102L	$9 \downarrow$ ¢ 9	2912	¢EE	1
で891	عと0＇st	26S゙て	St901	$8 \pm ¢ \mathrm{c}$	Se9－	$2 \angle 8$	9
	88E ¢	0＜0＇L	$98 \chi^{6}$	198．${ }^{\text {¢ }}$	Stil	tg ${ }^{\circ}$	5
LLてEし	89911	$88{ }^{\text {8 } 6}$	6LL	LSE＇ε	HL	$\angle 6 乙$	－
しヤをい	LE8＇6	918.2	เsz＇9	99ε 己	己SE	Gll	ε
0しで6	ャ 28.2	186.9	S09＇t	98E ！	801．	1020	2
569.9	－12＇s	$1+8 \cdot \varepsilon$	902\％	Sst．	ع6800 ${ }^{\circ}$	$\angle 91000$	1
100	20＇0	90°	010	0s：0	960	$66^{\circ}=0$	${ }^{1}$

066b	066＊	$686{ }^{\circ}$	686\％${ }^{\circ}$	686 ${ }^{\circ}$	$886{ }^{\circ}$	886 ${ }^{\circ}$	L86＊	L86 ${ }^{\circ}$	L866 ${ }^{\circ}$	$0^{\prime} \varepsilon$
986b	986t	986\％	S86t ${ }^{\circ}$	七86＊＊	786\％	ع867 ${ }^{\circ}$	286t	2866	186t	
186t	086t	6L6t＇	646t	8L6＊	LL6t＇	L26 ${ }^{\circ}$	9 266°	9866	¢ $186 \nabla^{\circ}$	6% 82
t＜66	E＜6t ${ }^{\circ}$	2L6t＇	1 $166 \square^{\prime}$	0＜6\％	696\％	8966°	L96\％${ }^{\circ}$	9266\％	¢ $266 t^{\circ}$ G96	87
t966＊	E966＊	296＊	196\％	0996．	696\％	4966°	996\％${ }^{\circ}$	9967	C96t	12 9%
296\％	196b ${ }^{\circ}$	6t6t	8ヵ6t	976 6°	$976{ }^{\circ}$	Et6t	اャ6＊	966t	ع96b	9 ＇
966b	ヤ¢6も	2E66	186\％	626\％	LZ6＊	926t				
916t	عし6\％	1166°	606t	906\％	ヤ06t	106t	226\％	026t	816	－ 2
068b	L88t ${ }^{\circ}$	t98\％	$1+86^{\circ}$	8＜86＇	9486 ${ }^{\circ}$	1060	868t	$968{ }^{\circ}$	E68t	$\varepsilon<$
L986	tS8t	058t	9ャ8 ${ }^{\text {b }}$	2ヶ8t	328			798t	1986	でて
Li8t	こ18t	808t	ع08t	86くt			0 088	928t＇	1286°	12
218	ご8	8080	ع08\％	862b		88 26°	ع8 26	8LLt	ごL \square°	0 O
2926	$19 \angle 6$	99Lt	OSLb	t 切 \square°	8ELt	てELb	92，${ }^{\circ}$	6126	と1くb	
90＜b	669＊	E69t	989b	8 296°	1 296°	788＊	9S9t	6796	1 ¢	
EE9t	929＊	919t	809t ${ }^{\circ}$	665t	169\％	289＊＊	ع 296	6．96	1098	1
SbGb	SESt	92Sb	Sltt	90st ${ }^{\circ}$	96加	奴加	t＜tt		－Scb	L1
1カカカ	6てtt	81ヵt	90tt	七6E＊	28£ち	0LE	LSE	と	己Str	91
$618 \square$	90Eb	262t	6くても	992＊						
くLLV	2916	Lもけ	1Eしも	Sடレカ					26．7	も1
SiOt	$\angle 66 \varepsilon^{\circ}$	086E＇	296E	ヤャ6ع				6b0	己EOt	$\varepsilon \downarrow$
08．88	1188	062E	0＜LE				8	698E	$6 \mathrm{~b} 8 \mathrm{E}^{\circ}$	で
1296	66iSE	LLGE＇				$80 \angle \varepsilon$	989と	999E＇	Et9 ${ }^{\circ}$	$1 \cdot$
		22.9	ヤGE	Lع9\％．	809乏	¢8も¢	1．9も¢	8\＆ゅ¢	ど切	01
E8EE	S98\％	טロ\＆ヒ＇	SIEE	682E	ャ9て£	8®てを	てしてE゙	981E	6918	0
EとLĖ	901E	8LOE	150E＊	ع乙0ع	S66Z	L96て＇	686て	0162	188 ¢	0
298E	とて8で	十6L己	十9Lて	も¢くで	E0Lて	عL92	で¢92＇	L19Z		0
6ts？	〈らず	98ャで	カらちで	てでって	68عて	LSEZ	七てとて	162 L	L9己て	0
－2．3	OGLで	LSLて	とて」で	880て	tsoz＇	6レ0て	S861．	0961＇	s161．	90 90
6281	17t8 ${ }^{\text {c }}$	8081	2LL1	9E＜1	0021	7991．	8291＊	1691	bSG1	
$\angle 151$	08ti	E切 ${ }^{\text {c }}$	90t1．	89El	เعEL＇	E62।	Gszi．	LIて1．	6＜11，	$\varepsilon 0$
1til	E016	¢901．	9201．	$\angle 860^{\circ}$	8 $\square 60$	0160	$1 \angle 80^{\circ}$	こと88		$\varepsilon 0$
ESL0	－1 20	S $290{ }^{\circ}$	9890	9690°	$\angle 990$	$\angle 190$	$8<t 0^{\circ}$	8Et0	86	0
6580＇	6180	6L20	68てO＇	6610°	0910	0210	0800	0t00	0000	0
60°	80＇	10°	80°	90°	\＄0 0°	80°	$20 \cdot$	10°	00＊	z

＂ $0=z$ woxj өaing［Buxiou paspuвfs

ENDSEM- EXAMINATION MAY-2022
Program: CIVIL S Y.B.TTCh (Civ) Sem Duration: 03 Hours

Course Code: BS-BTC401

Course Name: PROBABILITY \& STATISTICS

Maximum Points: 100
Semester: IV

- Attempt any five out of seven questions
- Use of scientific non-programmable calculator is allowed.

ENDSEM- EXAMINATION MAY-2022

ENDSEM- EXAMINATION MAY-2022

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
QVI \\
a)
\end{tabular} \& For a random sample of 10 pigs fed diet \(A\), the increases in weight in pounds in a certain period were \(10,6,16,17,13,12,8,14,15,9\). For another random sample of 12 pigs, fed on diet \(B\), the increase in the same period were \(7,13,22,15,12,14,18,8,21\), \(23,10,17\). Test whether the diets A \& B differ significantly as regards their effect on increase in weight \& 10 \& 2 \& 1

3 \& 1.1 .3

2.1 .3

\hline | QVI |
| :--- |
| b) | \& | A die is thrown 264 times with the following results |
| :--- |
| Show that the die is biased | \& \& 1 \& 3 \&

\hline $$
\begin{array}{|l|}
\hline \text { QVI } \\
\hline \text { I a) }
\end{array}
$$ \& Fit a poisson distribution for the following data and also test the goodness of fit \& 10 \& 3 \& 3 \& 2.1.4

\hline | QVI |
| :--- |
| Ib) | \& In an examination it is laid down that a student passes if he secures 30% or more marks. He is placed in Ist,IInd or IIIrd division according as he secures 60% or more marks, between $45 \% \& 60 \%$ and between $30 \% \& 45 \%$ respectively. He gets distinction in case he secures 80% or more marks. It is noticed from the result that 10% of the students failed in the examination where as 5% of them obtained distinction. Calculate the percentage of students placed in the second division. \& 10 \& 3 \& 2 \& 1.1.3

\hline
\end{tabular}

웅			
©		 	品命
8			発
$\stackrel{\circ}{0}$		 	
$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$			
$\stackrel{8}{\circ}$			
à $\stackrel{1}{1}$ 0 0			
10	\sim	뜨ํํํํํํ웅	ก N

F

> Example
For $\Phi=10$ d．o．f．
$\mathrm{P}\left(\chi^{2}>15.99\right)=0.10$

Percentage Points of \boldsymbol{t}－distribution
 oIduraxy
 For $\Phi=10$ d．o．f．
 $10=($ ZL8 L $<|7|) d$

9＜9＇z	Gzez	096.1	St9＇1	282＇	∞
$\angle 19 \%$	95ع＇己	086＇	899＇1	68て＇	021
0992	06E＇z	$000{ }^{\circ}$	129.1	962＇．	09
ャ0L 2	とでて	$180 \cdot 2$	＋891	EOE＇	06
0sciz	Lst？	で0 ${ }^{\text {c }}$	L69＇1	OLE！	${ }^{\circ} \mathrm{\varepsilon}$
9sL	29t\％	950.2	669.	いど	62
ع9 1 L	L96\％	850＇Z	102．	عเど！	82
12L	とくもて	290＇z	E02：1	かに！	$\angle 2$
6LL＇z	6Lがて	$990{ }^{\circ}$	902＇	SLE！	92
L8でて	98t？	090.2	802	9181	92
26L＇Z	26\％ 2	\＄90＇z	H2\％	8เع゙！	ゅ乙
2082	0092	$690{ }^{\circ}$	－120	6181	εz
618.2	809： 2	ヤ 20.7	212.1	เモE＇！	乙z
เع8＇己	819 \％	$080 \cdot 2$	120．1		12
969＇z	8zs 2	$980{ }^{\circ}$	SEL1	¢てE＊	02
1982	689\％	ع60＇z	62L 1	8281	61
8 28.2	zeg＇z	101＇z	ャEL＇	OとE＇।	81
968.2	L99＇\％	$011 \% 2$	OtL＇	$\varepsilon \in \varepsilon \cdot$	4
126.2	E8G\％	OZI＇z	9ヶL 1	LEE＇	91
2062	209＇z	เย1＇z	EsL：	LDE－	91
$\angle 166^{\circ} \mathrm{Z}$	b29＇z	9ャレ＇て	192：	Ste＇	b
$210{ }^{\circ} \mathrm{E}$	OG9＇z	091＇z	1L2＇1	OSE－	ε
¢ $90 \cdot \varepsilon$	$189 . 乙$	6Lt＇z	282：	$998 \cdot$	21
$901 . \varepsilon$	91く＇z	102＇z	96L	ع9¢－	H
$691 . \varepsilon$	ャ9L＇z	8てz＇乙	218＇1	てくE＇	01
092	$128 \cdot 7$	29でて	Eと8：	E8E：	6
¢¢EE	988.2	$908 \cdot 8$	098：	L6E＇L	
$66 \square^{\circ} \mathrm{E}$	966： 2	s9e\％	968．1	Stri	L
LOLE	Eかっと	くカカ＇て	Eャ6＇	Oカガ！	9
280＇t	¢9¢＇ε	1－29\％	910\％	920゙！	g
ャ09＇t	LロL®	9LC＇Z	2¢1\％	ع¢9：	†
1ヵ8＇S	しから＇t	281．	ยяย̇乙	$8 \mathrm{Ec} \cdot \mathrm{L}$	ε
926．6	998．9	と0どャ	OZ8＇Z	988 －	z
$\angle 99.89$	2181E	901＊${ }^{\text {c }}$	カど9	820 ¢	1
10.0	200	90\％	010	020	

Applled Mathematics - IV
(Civit/Const. / Prod.)

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 0000	. 0040	. 0080	. 0120	. 0160	. 0199	0239	. 0279	. 0319	035
0.1	. 0	. 043	. 0478	. 05	. 055	. 0596	. 063	. 0675	07	0753
0.2	. 0793	. 8832	. 0871	. 0910	. 0948	. 0987	1026	- 1064	. 1103	1141
0.3	. 117	. 1217	1255	. 1293	1331	. 1368	. 1406	. 1443	148	1517
0.4	. 1554	1591	. 1628	. 1664	1700	. 1736	. 17	180	18	1879
0.5	. 191	. 1950	. 1985	. 2019	. 205	2088	2123	215	2190	
06	2257	2291	. 2324	. 2357	. 2389	. 242	. 2454	2486	25	2549
0.7	2580	2611	. 2642	. 2673	. 2703	. 2734	. 2764	2794	2823	2852
0.8	. 2881	2910	. 2939	. 2967	. 2995	. 3023	. 3051	. 3078	3106	
09	3159	3186	.3212	. 3238	326	3289	. 3315	. 334	336	33
1.0	. 3413	. 343	. 3461	. 3485	3508	3531	3554	3577	599	62
1.1	. 36	. 3665	. 3686	. 3708	3729	3749	. 3770	. 3790	3810	3830
12	. 38	3869	. 3888	. 3907	. 3925	. 3944	. 3962	3980	3997	4015
1	4032	. 4049	4066	. 4082	. 4099	. 4115	. 4131	4147	. 4162	4177
1.4	4192	4207	. 4222	. 4236	. 4251	. 4265	. 4279	. 4292	430	4319
1	4332	4345	4357	. 4370	4382	4394	. 4406	4418	4429	
1.6	4452	4463	. 4474	. 4484	4495	4505	4415	4525	45.35	
1.7	. 455	. 4564	. 4573	. 4582	. 4591	4599	4608	46	4625	
1.8	. 4641	. 4649	. 465	4684	71	. 4678	4686	4693	469	
1.9	. 4713	. 4719	. 4726	. 4732	. 4	. 4	475	475	476	
2.	. 4772	. 477	. 4783	. 4788	4793	4798	4803	808	2	
2	. 4821	4826	. 483	. 4834	. 4838	. 4842	4846	4850	. 4854	
2.2	. 4861	4864	. 4868	. 4871	. 4875	. 4878	. 4841	4884	4887	
2.3	4893	4896	. 4898	. 4901	. 4904	4906	4909	4911	13	
2.4	491	. 4920	. 4922	. 4925	4927	. 492	4931	4932	4934	
2.5	4938	4940	. 4941	. 4943	4945	. 4946	4948	4949	4951	
26	. 49	. 4955	. 4956	. 4857	. 4959	. 4560	. 4961	4962	4963	
2.7	. 4965	. 4966	. 4967	. 4988	. 4989	. 4970	. 4971	4972	4973	
2.8	. 4974	4975	. 4976	4977	. 4977	. 4978	. 4979	. 4979	4980	98
29	. 4981	. 4982	. 4982	. 4983	. 4984	. 4984	. 4985	. 4985	4986	498
3.0	4987	4987	. 4987	. 4988	. 4988	. 4989	. 4989	. 4989	4990	49

ENDSEM- REEXAMINATION JULY-2022

Maximum Points: 100
Semester: IV
121712

- Use of scientific non-programmable calculator is allowed.

ENDSEM- REEXAMINATION JULY-2022

ENDSEM- REEXAMINATION JULY-2022

	mean life of 1280 hours with standard deviation of 398 hours. Is there a significant difference between the mean of two batches?												
QVI b)	A die is thrown 264 times with the following results									06	1	3	2.1.3
	No appeared on die			2		4		6					
	Frequency		40	32	28	50	54	60					
	Show that the die is biased												
QVI c)	Calculate Karl Pearson's coefficient of correlation for the following data:									08	3	3	2.3.1
	X	78		9	99			59	79				
	Y	125		37	15		12	107	136				
$\begin{aligned} & \text { QVI } \\ & \text { I a) } \end{aligned}$	Fit a poisson distribution for the following data and also test the goodness of fit									10	3	3	2.1.4
$\begin{aligned} & \text { QVI } \\ & \mathrm{I} \text { b) } \end{aligned}$	In a partially destroyed laboratory record of an analysis of correlation data, the following results only are legible: Variance of $\mathrm{X}=9$ Regression equations: $\begin{aligned} & 8 x-10 y+66=0 \\ & 40 x-18 y=214 \end{aligned}$ What are i. Mean, value of x and y ii. Standard deviation of y. iii. Coefficient of correlation between x and y									10	3	2	1.1.3

929.2	9てع＇己	096.1	979＇	28て＇	\sim
$\angle 192$	$88^{\text {8 }}$ C	086．1	899.	682＇	021
099＇z	06ε＇	$000{ }^{\circ}$	LL2＇	96て＇	09
70L	とでって	120%	＋89 ${ }^{\circ}$	$\varepsilon 0 \varepsilon^{\circ} \stackrel{ }{ }$	O＊${ }^{\text {c }}$
0se＇z	くstr	てヵロ\％	269：	OLE＇	0ε
99L	29\％＇2	960＇z	689\％	Hど	62
¢9L	297\％	8ャ0＇z	102\％	ยเع＇	82
1LL＇Z	とくがて	250＇z	802：	ヤどレ	$\angle 2$
$6 \angle L Z$	6 $2 \square^{\circ} \mathrm{Z}$	990＇z	902\％	¢เع＇レ	92
L8て＇z	985 ${ }^{\text {c }}$	090%	802\％	91 ＇	¢
262%	26ヶ＇	＋90＇z	16\％1	$818 \cdot$	ャ2
2082	$00 \mathrm{~S}^{\prime} 2$	$690 \cdot 2$	－1ぐ1	6181	ع乙
618.2	$80^{80}{ }^{\circ}$	$\checkmark \angle 0.2$	26L1	เてどし	てz
188.2	819．2	080＇z	12L－		เて
9t8＇z	889 \％	980 ＇	92L＇	¢ ¢ \％	02
198.2	689＇2	ع60＇${ }^{\text {c }}$	622：	82どレ	61
$8 \angle 8.2$	299\％	101＇2		－ 0 ¢ \downarrow	81
$868{ }^{\circ}$	L99 ${ }^{\circ}$	Ob＇z	ObL゙！	ยと๕：	4
126.2	£89\％	0とt＇z	9tL－	$\angle \mathrm{LE} \cdot$	91
$\angle \square 6{ }^{\circ}$	209%	เع⿺尢	ESL：	しだ！	91
$\angle 26^{\circ} \mathrm{Z}$	ャ29＇z	stic	192．	Ste\％	\rightarrow
$210 \cdot \varepsilon$	099＇z	0912	121：	Ose ${ }^{\text {－}}$	ε
¢90．$¢$	189.2	6L12	282：	$998 \cdot$	2L
$901 \cdot \varepsilon$	$81 / 2$	10でZ	961．	$\varepsilon 9 \varepsilon \cdot$	11
$691 . \mathrm{E}$	＋92＇	8てて＇乙	218＇	てくど1	$0 \cdot$
0¢でと	128.2	て9でて	ع¢8－	ع8E－	6
¢ce．	968 ＇ट	$90 \underbrace{\prime}$ 己	$098 \cdot 1$	L6E－	8
66ヶ¢	866：	¢98＇乙	968．	S｜ゼし	L
LOLE	$\varepsilon \rightarrow 1 \cdot \varepsilon$	Lカガて	Eャ6．	Oカガし	9
2¢0＇t	S9¢ ε	129＇z	Stoz		g
＋09＇t	$\angle \square L \mathcal{E}$	9LL＇Z	てとトて	$\varepsilon \varepsilon \varepsilon^{\circ} \stackrel{ }{ }$	
178 ＇9	じら゙ャ	2818	๕sع	$88^{\circ} \mathrm{I}$	ε
¢ 26.6	S96．9	ع08＇ь	0マ6＇乙	988．	2
L99．89	2181と	902\％	ヤセと9	$8 \angle 0^{\circ} \mathrm{E}$	1
100	20%	90°	010	OZO	

WNNNNNNNNN			
$\stackrel{\rightharpoonup}{\perp} \stackrel{\rightharpoonup}{\omega} \vec{N} \vec{N} \stackrel{\rightharpoonup}{\circ}{ }^{\circ} \infty$ 			O
$\vec{\infty} \vec{\sim} \vec{\sigma} \vec{\sim} \vec{\perp} \vec{\omega} \vec{N} \vec{~}$ 			\％
N N N N N N N NNN N亗	$\stackrel{\rightharpoonup}{\infty} \vec{\infty} \vec{\sigma} \vec{\sigma} \vec{\perp} \vec{\omega} \vec{N} \overrightarrow{0}$ 四		웅
今 W 	NNNNNNNさ N N N N 		$\stackrel{\square}{\circ}$
		$\vec{\infty} \vec{\sigma} \vec{\oplus} \overrightarrow{+} \vec{N} \vec{t} \infty \nu$ or ω苟品	－
 	 	 宁	－
芯萝			앙

066 ${ }^{\circ}$	0686	686 ${ }^{\circ}$	686 ${ }^{\circ}$	686t	8867 ${ }^{\circ}$	8866 ${ }^{\circ}$	L867	L866 ${ }^{\circ}$	L86t ${ }^{\circ}$	$0 \mathcal{O}$
986b	986t	988t ${ }^{\circ}$	9886 ${ }^{\circ}$	t88＊	t86＊	E86\％	286t	286b		
186女	0866	626＊${ }^{\circ}$	6L6t ${ }^{\circ}$	8L6t＊	LL6t	L26t ${ }^{\circ}$	9 $266 b^{\circ}$	C86t ${ }^{\circ}$	1866	6.2 8.2
$\checkmark \angle 6{ }^{\circ}$	EL6t ${ }^{\circ}$	2L66	L $\angle 6 t^{\circ}$	0＜6＊＇	698＊	8986	L96t	$996 v^{\circ}$		2
$\checkmark 96 \square$	E96b ${ }^{\circ}$	296＊	$196 t^{\circ}$	0996	698＊	296b	$996 t^{\circ}$	09		2
Z960	$156 \nabla^{\circ}$	6t6t	8t6 6°	9t6t	St6t	Eャ6t	$176 \square^{\circ}$	0t6b		2
9E6 ${ }^{\text {b }}$	－¢66	ZE6t ${ }^{\circ}$	1E6t	626t	LZ6	926				
9160	E16 ${ }^{\circ}$	116＊	606t	908t	L	9	Z26t	026 ${ }^{\circ}$	8166	－己
068 ${ }^{\circ}$	L88＊	788\％${ }^{\circ}$	$1+80^{\circ}$	8L8			868t ${ }^{\circ}$	988t	E68t	
L98t		098t＊	9				888t	b98t	198t	でて
$\angle 180$	－	098v			8t	十E8t＇	0EBt＇	928＊	L28t	12
2180					E6Lt ${ }^{\circ}$	8826	E8L	BLLt ${ }^{\circ}$	ZLL ${ }^{\circ}$	02
$\angle 9 \angle b$	1926	9Gくb	092t		8ELt＇	てELb	9てくも	6120	Eしくも	$6{ }^{\prime}$
902b	669 ${ }^{\circ}$	E696 ${ }^{\circ}$	989t	B＜96	$1 \angle 9 \square^{\circ}$	ヤ98t ${ }^{\circ}$	9996	6t9b	1－96	81
EE9b	Sて．9b	919t	8096＊	689＊	165t	289\％	ELSt ${ }^{\circ}$	ヤ89＊	tSct	$2 \cdot$
GbSb	SESt	sてgt	S！加	90st		カ8tt	ゆくカも	E9tr	2Stb	9.1
レロカロ	6 6切	81to	90ヶt	¢6Eb	z8Et	0＜8\％	＜SEt	9tEb	己EEt	$9 \cdot$
6LED	guet	26てt	6 2 て ${ }^{\circ}$	S92t	し9ても	8\＆Zt	こてZゅ＇	LOZ6＇	261t	ガし
LLID	2910	L．OLt	1Eしt	Sじも	680t	280t	990t＊	6ヶ0ヶ	乙EOb	$\varepsilon \downarrow$
S10t	166E	086E＇	Z96E	切6¢	sZ6E	L08E	888E	698E	6ヤ8E＇	$\boldsymbol{\chi}$
い8：88	1188	06LE	OLLE	6ヵ 28	6ZLE	8028	989E＇	S89E	Eヶ9E＇	＇
しく9と	6658	$\angle \angle 9 \varepsilon^{\circ}$	bSSE	IE9E：	809E	S8tE	L9ヵE	8¢ヤ¢	عเヤE＊	01
68EE	ŞEE	U中EE	GIEE＊	682E	$\downarrow 92 ¢$	88टE	こเて£＇	9818	6SLE	60
とعレヒ	901E	BLOE＇	เSOE	EZOE	s66z	L96z	6c6z	016z	188Z	80
こS8己	ど8て	ヤ6LZ	ャ912	ャعくて	EOLZ	عL9Z	こヶ9で	1192	089Z	$\angle 0$
605	1198	98ヶて	切功	こてゅて	68Ez	LsEz	カてとて	162て	LsZz	90
D223	06し己	LSIZ	EZIて	880て	¢90\％	6102	9861．	OS61 ${ }^{\circ}$	S161．	90
628）	15t81	8081	2くL1	9EL1	0021	t991	8291．	1691	t¢	$\checkmark 0$
＜151	08t1	とヤヤ1	90tb	89E1．	LEE।	E621	ssて！	くしで，	62L1	$\varepsilon{ }^{\prime} 0$
しもい	E01．	ャ801．	9201	2860	8ャ60	0160	1280	2¢88	E6LO	て0
ES＜0	－120	G $290{ }^{\circ}$	9890＇	9890	＜990	2190°	$8 \angle 50$	88ャ0	86E0	10
6580	6180	6く20	6E20＊	6610°	0910＇	0210	0800	0t00	0000	00
60°	80°	20°	90°	90°	＋0＇	80°	20°	10°	00＊	2

aning jeurion paspuas sepun eest

D.S.A. (AY 2021-22), End Semester Examinations, July 2022
D.J.Y, ヨ, TとM

Program: B.Tech. Civil Engineering
Course Code : PC-BTC403
Course Name : Concrete Technology
Instructions:

1. Attempt any FIVE questions out of SEVEN questions

Duration: 3 Hour Maximum points: 100
Semester: IV
2. Answers to all sub questions should be grouped together
3. Draw neat diagrams wherever required
4. Assume suitable data if necessary and state the clearly.

Q3	a. Design reinforced cement concrete of M35 grade using guidelines given in IS 10262:2019 for the following data.			15	2	2	2.3.1
	Exposure condition: Moderate	Maximum size of aggregate -20 mm	Method of Sp placement -Chute agg	Specific gravity of 20 mm aggregate - 2.70			
	Strength of cement $\mathrm{OPC}-53 \mathrm{MPa}$	Workability slump, 80 mm	Type of coarse aggregate - angular coarse aggregate Sp agg	Specific gravity of 10 mm aggregate - 2.70			
	Refer data of Que. 2b, for Zone of sand	Total moisture content in 20, 10 $\mathrm{mm}-\mathrm{0} 0.5 \%$	Total moisture content in fine aggregate -3.0% Sp agg	Specific gravity of fine aggregate - 2.65			
	(b) What you know about Silica fumes? How it helps to Improve performance of concrete?			5	3	4	2.1.2
Q4	(a) Design concrete of M35 grade using ACI Method; consider the data related to the properties of material as given in Que.No.3a. (b) Discuss advantages of fiber reinforced concrete over ordinary concrete. (c) Explain the procedure of measuring workability using flow table test.			10 6 4	2 1 2	2 3	$\begin{aligned} & 1.3 .1 \\ & 2.3 .1 \\ & 1.2 .1 \end{aligned}$
Q5	(a) Explain the mechanism of retardation using admixture in detail. (b) Describe the procedure for measuring pH of concrete? Highlight the importance of the same from durability point of view. (c) What is polymer concrete? Discuss various applications of the same.			$\begin{aligned} & \hline 8 \\ & 6 \end{aligned}$	1 1 2	2 3 2	$\begin{aligned} & 2.1 .2 \\ & 1.3 .1 \\ & \\ & 2.3 .1 \end{aligned}$
Q6	(a) Discuss in detail process of batching for making concrete. (b) What do you meant by cold whether concrete? (c) What is NDT? Where it is required?			8 6	1 3 2	2 3 3	2.3.1 1.3.2 1.4.1
Q7	Write explanatory notes on the following (any Four)						
	i) DOE method of mix design			5		2	1.3.1
	ii) Low heat Cement				2	2	1.3.1
	iii) Bulking of sandiv) Accereators in concrete			5	3	2	1.3.1
				5	1	2	1.3.1
	iv) Accelera v) Workabilit vi) high perf	and Durability		5	1	2	1.3.1
		nance concrete		5	3	2	1.3.1

08.02	2aruou ssew
08-02	sqeis 8 sururaed
$001-02$	Suminjos 6uping
$001-02$	sпем рөэлориял 8 sureg
08.02	॥em әmprnsqns's6unooj ueld
08.02	
(uxu) dunjs po atuey	

(8) 20	2	G2	ε	(\%) ॥Е paddenue xouddy
.	01%	0¢Z	$0 \bullet 2$	mux 081-051
001	002	912	928	Uu 001-08
92.	Cx\|	002	902	U44 0\%-08
			06 92)	(duras)
um 0s 1	S10 \%	H14ct	tun of	woym
			90968e	15\% 10
tunuteta p	210, mo:	10 clabay	2 tatam	AH\|qexiom
ajamos paupura me uon				

(6) First estimate of density of fresh concrete as per		
4	ACl 211.1 -91	
Maximum size of	First estumate of densly of	hash concieta
	Natarentamethym	Alr entrained $\mathrm{kg} / \mathrm{m}^{3}$
10	2285	2190
12.5 (20,25.40.50)	2315	2235
20	2355	2280
150	2505	2435

 $\Delta \quad(c \cos m p p)$ Aggregate Concrete For Nominal Maximum Size of Table 4 Water Content per Cubic Metre of 2 Minimum grade for plain concrete under mild exposure condition ix not specified. nut exceed the limit of prozolona and sing specified in IS 1489 (Par I) and IS 455 respectively.

 1 Cement content prescribed in this table is irrespective of the grades of cernent and it in inclusive of additions mentioned in 5.2, The NOTE:
 260
260
280

240
250
(3)
220
(i)
, $4 / 21$

נบวมัก Minimum

0,45
0,45
OS O c) 10 090 (b) one sous Maximum
Free Waterunturyin

0.45

ST W
$M 20$
$M 20$
sw
(b)

$09:$ on i otic

00:
00%
9)
, willy Cement
Content

for Different Exposures with Normal Weight Aggregates of 20 mm Nominal Maximum Slue
Table 5 Minimum Cement Content, Maximum Water-Cement Ratio and Minimum Grade of Concrete
$\begin{array}{ll}3 & 3 \\ 6 & 3 \\ 6 & 3 \\ 6 & 2\end{array}$

5.2.1 The actual values of air content can also iii) 40 08

$$
\begin{array}{ccc}
\text { St Nominal Ilaximum Sics } & \text { Entrapped Air, as } \\
\text { No. } & \text { of Aggregate } & \text { Percentage } \\
& \text { mm } & \text { of Volume of Concrete } \\
\text { (1) } & (2) & \text { (3) } \\
\hline
\end{array}
$$

$\begin{array}{ll}\text { ob w } W & \text { or } 0 \\ \text { SE } W & \text { sro }\end{array}$
Si Exposure
chum! w unu!u!

Retort Cancun
(Clause 52)

(Clause 52)

(Clause 52)

naiver
andy yours
 Minimum 810
01
51

00
550
(6)

Bharatiya Vidya Bhavan's
 Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Examinations, May 2022

S.4.B.Trea (Civil) 1em U

Duration: 3 Hour
Maximum points: 100
Semester: IV
Program: B.Tech. Civil Engineering
Course Code : PC-BTC403
Course Name : Concrete Technology

Instructions:

1. Attempt any FIVE questions out of SEVEN questions
2. Answers to all sub questions should be grouped together
3. Draw neat diagrams wherever required
4. Assume suitable data if necessary and state the clearly.

Que. No.	Descriptions			Potnts	co	BL	PI
Q1	(a) Draw the layout of RMC plant. Explain different functional units of batching plant and their utility. (b) What do you mean by carbonation of concrete? Discuss the various factors that affect the rate of carbonation. (c) State the advantages of super plasticizers.			$\begin{gathered} 10 \\ 5 \end{gathered}$	3 3 1	2 4 2	1.2 .1 2.1 .2 1.2 .1
Q2	a. What are mineral admixtures? Name four mineral admixtures and their sources.			5	1	3	1.3.2
	b. Design concrete for M30 grade using guidelines given in IS 10262:2019 for the following data.			15	2	2	2.3.1
	$\begin{array}{\|c} \hline \text { Exposure condition: } \\ \text { Moderate } \end{array}$	Maximum size of aggregate -20 mm	Method of placement - Chute	Specific gravity of 20 mm aggregate - 2.72			
	Strength of cement OPC - 50 MPa	Workability slump, 50 mm	Type of coarse aggregate - angular coarse aggregate Sp agg	Specific gravity of 10 aggregate - 2.71			
	Zone of sand - II	Total moisture content in 20, 10 mm -- 0.3\%	Total moisture Sp content in fine aggregate -2.5% ag	Specific gravit aggregate - 2.62			
Q3	(a) What is High Performance concrete (HPC)? Discuss the various characteristics of HPC. (b) What you know about non-destructive testing of concrete? Explain in detail the procedure for conducting UPV and Rebound hammer test.			10	3	4	2.1.2
				10	2	2	2.4.2
Q4	(a) Design concrete for M30 grade using ACI Method; consider the data related to the properties of material as given in Que.No.2. (b) What is fiber reinforced concrete? How it is different than ordinary concrete? (c) Differentiate between mineral and chemical admixtures.			10 6	2 1 2	3 2 3	1.3 .1 2.3 .1 1.2 .1

Q5	(a) What is underwater concreting? Explain Tremie method in detail. (b) How light weight concrete is manufactured? (c) Highlight the salient features of Road Note No. 4 method.	$\begin{gathered} \hline 10 \\ 5 \\ 5 \end{gathered}$	2	2 3 2	$\begin{aligned} & \hline 2.1 .2 \\ & 1.3 .1 \\ & 2.3 .1 \end{aligned}$
Q6	(a) Enlist the various stages of concrete production and discuss compaction of concrete in detail. (b) What is Polymer concrete? State the applications of the same. (c) How GGBS improve the performance of concrete?	$\begin{gathered} \hline 10 \\ 5 \\ 5 \end{gathered}$	2	2 3 3	$\begin{aligned} & \hline 2.3 .1 \\ & 1.3 .2 \\ & 1.4 .1 \end{aligned}$
Q7	Write explanatory notes on the following (any Four) i) Hot weather concrete ii) Sulphate Resisting Cement iii) Transit Mixer iv) size and shape of aggregates v) Durability of Concrete vi) Retarders	5	1	2 2 2	$\begin{aligned} & 1.3 .1 \\ & 1.3 .1 \\ & \text { 1.3.1 } \end{aligned}$

08.02	ขวjuuou ssew
08-02	sqeis 8 squamoned
001-02	sumnjos Bupiping
$001-02$	
08.02	\#lem ampnnsqns's6unooj uield
08.02	
(mu) dunjs jo abuey	Loturuisuos po adx ${ }^{\text {a }}$

s 2	ε	$\begin{array}{r} (x) \text {) } 1 \mathrm{e} \\ \text { pooddenua } \\ \text { xoiddv } \end{array}$
$0 \varepsilon z$	002	ww 081-0st
sı2	szz	ww 001-08
002	902	บw DS-0¢

snouen дof dunjs fo anjen papuammoray (7)

160	80	S1	180	880	980	18	OSI
to	$88^{\circ} 0$	$\left(0 z^{\prime} \mathrm{Sz}\right.$ '0¢) 9ε	090	006	+90	99°	$\text { (} \left.0 L^{\prime} \circ \mathrm{S}^{\prime} \mathrm{O}^{\prime} \mathrm{Cz}\right)$
	8 ± 0	08	¢¢0	SS0	150	650	S 21
.	$88^{\circ} 0$	st	+0	$9 \% 0$	870	so	01
әјコ)	ข1ə1) paugenua ne uon	EdW	00%	82	92	-2	WJ
		 	10 pues jo sninpow sssuau! 				а) jo azls unuuxew

[^0]10 aunjon tun /azéas66e asreos fo aunjon xing Kig (i)

Bharatiya Vidya Bhavan's
 Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.

Program: B.Tech. Civil Engineering
Course Code : PC-BTC403
Course Name : Concrete Technology

Duration: 3 Hour 1317122 Maximum points: 100
Semester: IV

Instructions:

1. Attempt any FIVE questions out of SEVEN questions
2. Answers to all sub questions should be grouped together
3. Draw neat diagrams wherever required
4. Assume suitable data if necessary and state the clearly.

Q5	(a) Explain in brief Light weight concrete, high density concrete and hot weather concrete. (b) Discuss the applications of fiber reinforced concrete. (c) What is retarder? Explain the need of the same in construction.	10 5 5	1	2	$\begin{aligned} & 2.1 .2 \\ & \\ & 1.3 .1 \\ & 2.3 .1 \end{aligned}$
Q6	(a) Explain any three tests to be conducted on each fresh and hardened concrete. (b) What probiem is faced during under water concreting? (c) How voicanic ash helps to improve the performance of concrete?	10 5 5	3 2	2 3 3	$\begin{aligned} & \hline 2.3 .1 \\ & 1.3 .2 \\ & 1.4 .1 \end{aligned}$
Q7	Write explanatory notes on the following (any Four) i) Compaction factor test ii) Portland pozzolona cement iii) Silica fumes iv) Batching of concrete v) Durability vi) Polymer concrete	5 5 5 5	3 1 1	2 2 2 2 2 2	$\begin{aligned} & 1.3 .1 \\ & 1.3 .1 \\ & 1.3 .1 \\ & 1.3 .1 \\ & 1.3 .1 \\ & 1.3 .1 \end{aligned}$

(4) Recommended value of slump for various

- Concrete as per ACl 211.1-91 t6-tite ioviad se rajuen

Date: 11 July 2022
Duration: $\mathbf{3} \mathrm{Hr}$.
Max. Points: 100
Semester: IV

Name of the Course: Indian Traditional Knowledge
Instructions: Solve ANY FIVE Questions with elaborative answers in legible handwriting.

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058

END SEMESTER EXAMINATION, MAY-2022

Program: B.Tech. in Civil Engineering
Class: Second Year B.Tech. (Civil)
Course code:MC-BTC 002
Name of the Course: Indian Traditional Knowledge

Date:17May 2022
Duration: 3 Hr.
Max. Points: 100
Semester: IV

Instructions: Solve ANY FIVE Questions.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \mathrm{Q} . \\
\& \text { No. }
\end{aligned}
\] \& Question \& \% \& 8 \& \(\stackrel{\square}{\square}\) \& \(\Sigma\) \& \\
\hline Q. 1 \& \begin{tabular}{l}
a) Explain: 'Concept and Rule of Dharma in India since ancient times' with suitable examples. \\
b) Justify: "India is the unique country with unity in diversity as its core strength since ancient times" giving suitable examples.
\end{tabular} \& \begin{tabular}{l}
(10) \\
(10)
\end{tabular} \& 1 \& \begin{tabular}{l}
II \\
VI
\end{tabular} \& 6.1 .1

6.1 .1 \& 1
1

\hline Q. 2 \& | a) List: Names of The Vedas and Upvedas. Justify:"Vedas are the eternal source of knowledge for the entire mankid". |
| :--- |
| b) Justify: "Nature is the supreme teacher (Guru)" describing characteristics of any 03 elements in nature, learnings of Adi yogi Shri Dattatreya from these elements of nature. | \& \[

$$
\begin{aligned}
& (10) \\
& (10)
\end{aligned}
$$
\] \& 1

1 \& I,VI
VI \& 6.1.1 \& 2

\hline Q. 3 \& | a) Explain: With two examples the greatness of wisdom of ancient indian scholars in the field of mathematics and astronomy. |
| :--- |
| b) Discuss: Superior Knowledge of ancient Indian sages explaining the valuable contribution of Maharshi Kanad. | \& \[

$$
\begin{aligned}
& (10) \\
& (10)
\end{aligned}
$$
\] \& 2

2 \& II

V \& $$
\begin{aligned}
& \hline 6.1 .1 \\
& 6.1 .1
\end{aligned}
$$ \& 3

3

\hline Q. 4 \& | a) Explain: Any one significant medical practice and medical practitioner in ancient India. |
| :--- |
| b) Justify:"Yoga is the key for long life with good health" in context of ancient as well as modern India. | \& \[

$$
\begin{aligned}
& (10) \\
& (10)
\end{aligned}
$$
\] \& 2

2 \& II

VI \& $$
\begin{array}{|l}
\hline 6.1 .1 \\
6.1 .1
\end{array}
$$ \& 4

\hline Q. 5 \& | a) List: Names of various Indian classical dance forms and Describe: Any two of them with its significance. |
| :--- |
| b) List: Various traditional art forms of ancient Indian and Describe: any one of them. | \& \[

$$
\begin{array}{|l|}
\hline(10) \\
(10)
\end{array}
$$
\] \& 3

3 \& I, V
I, V \& 6.1.1 \& 5

\hline Q. 6 \& | a) Explain: Rich heritage of Indian Traditional Languages since ancient times and significance of any one language of India. |
| :--- |
| b) Discuss: Significance and teachings of any one great epic of ancient Indian tradition. | \& \[

$$
\begin{aligned}
& \text { (10) } \\
& (10)
\end{aligned}
$$
\] \& 3

3 \& II
V \& 6.1 .1
6.1 .1 \& 6
6

\hline Q. 7 \& | a) Discuss: In brief, life, work, philosophy and contribution of Sant Dnyaneshwar Maharaj. |
| :--- |
| b) Discuss: In brief, life, work, philosophy and teachings of Bhagwan Gautam Buddha for the entire mankind. | \& (10)

(10) \& 4
4 \& V
V \& 6.1 .1
6.1 .1 \& 7

\hline
\end{tabular}

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058

$$
S+4, \eta, \frac{\text { RE-EXAMINATION, JULY -2022 }}{1 / 2}
$$

Program: B.Tech. in Civil Engineering
Class: Second Year B.Tech. (Civil)
Course code:MC-BTE 002
Name of the Course: Indian Traditional Knowledge

Date: July 2022
Duration: 3 Hr .
Max. Points: 100
Semester: IV $|4|>/ 22$
Instructions: Solve ANY FIVE Questions with elaborative answers in legible handwriting.

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examinations June-July 2022 (DSE)

Program: S.Y. B. TECH
Course Code: PC-BTC-405
Course Name: HYDRAULIC ENGINEERING

Duration: 03 Hrs.
Maximum Points: 100
Semester: IV

Notes:

- Attempt any five questions.

- Answer to all sub questions should be grouped together.
- Figure to right indicates full marks.
- Assume suitable data wherever necessary and state it clearly.

Q. No.	Questions	Points	CO	BL	PI
	(a) What do you understand by Dimensional homogeneity? Explain the term scale effects in model studies.	10	4	2	1.3.1
1	(b) Obtain an expression for the thrust (F) developed by a propeller which depends upon the angular velocity (ω), approach velocity (V), dynamic viscosity (μ), density (p), propeller diameter (D) and the compressibility of the medium measured by the local velocity of sound (C). Use Buckingham's $-\pi$ method.	10	4	4	2.1.2
	(a) Explain with neat sketches; (i) Working of siphon; and (ii) Power transmission through pipe and nozzle.	10	1	2	1.3.1
2	(b) What is HGL and TEL in pipe flow analysis? Draw HGL and TEL for three pipes connected in series carrying discharge Q from upper reservoir to lower reservoir. Diameter of pipes are D1, D2, D3 such that $\mathrm{D} 1>\mathrm{D} 2$ and $\mathrm{D} 2<\mathrm{D} 3$, lengths $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3$, friction factors $\mathrm{f} 1, \mathrm{f} 2, \mathrm{f} 3$ respectively. The difference in upper reservoir level and lower reservoir is H .	10	1	4	2.1.2
	(a) Prove that the force exerted by a jet of water on a stationery semicircular vane in the direction of the jet when the jet strikes at the center of the semi-circular vane is two times the force exerted by the jet on the stationery flat plate.	10	1	4	1.3.1
3	(b) A $45 \mathrm{~m} / \mathrm{sec}$ velocity jet of water strikes without shock on a series of vanes moving at $15 \mathrm{~m} / \mathrm{sec}$. The jet is inclined at an angle of 21° to the direction of motion of vanes. The relative velocity of jet at outlet is 0.82 times the value at inlet and the flow is radial. Determine hydraulic efficiency.	10	1	5	2.3.1
4	(a)Explain with neat sketch working of a hydroelectric power plant. Also differentiate between impulse and reaction turbine.	10	2	2	2.1.2

(2021-24) $>$

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examinations MAY 2022
(2021-22)
Duration: 03 Hrs.
Maximum Points: 100
Semester: IV

Notes:

- Attempt any five questions.
- Answer to all sub questions should be grouped together.
- Figure to right indicates full marks.
- Assume suitable data wherever necessary and state it clearly.

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai-400058
End Semester Examinations MAY 2022
(2021-22)

4	(a)Show that the efficiency of a free jet striking normally on a series of flat plates mounted on the periphery of a wheel can never exceeds 50%.	10	2	2	2.1.2
	(b) A jet of water of diameter 50 mm . strikes a fixed plate in such a way that the angle between the plate and the jet is 30 degrees. If the force exerted in the direction of the jet is 1550 N , determine the rate of flow of water.	10	2	4	2.3.1
5	(a) Explain: working of a Pelton type turbine with neat sketch and derive an expression for hydraulic efficiency.	10	2	2	
	(b) A turbine is to operate under a head of 30 m and a speed of 300 rpm . The discharge is $15 \mathrm{~m}^{3} / \mathrm{sec}$. Assuming efficiency of 0.85 , calculate the power developed. What would be the specific speed, power, discharge, rotational speed at a head of 20 m ?	10	2	4	3.1.6
6	(a)Write short notes on: (i) Priming of a centrifugal pump and (ii) Pumps in parallel and series.	10	2	2	2.1.2
	(b) The internal and external diameters of the impeller of a centrifugal pump are 300 mm and 600 mm respectively. The pump is running at 900 r.p.m. The vane angles at inlet and outlet are 20° and 30° respectively. The water enters the impellor radially and velocity of flow is constant. Determine the work done by the impellor per unit weight of water.	10	2	3	3.4.2
7	(a)What is most economical channel section? Discuss prismatic and non-prismatic channels and derive the conditions for most economical triangular channel section.	10	3	4	2.3.1
	(b) Derive the dynamic equation for gradually varied flow (GVF) in case of a wide rectangular channel.	10	3	4	2.3.1

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
Re-Examinations JULY 2022 (PC-BTC-405)

Program: S.Y. B. TECH
Course Code: PC-BTC-405
Course Name: HYDRAULIC ENGINEERING

Notes:

- Attempt any five questions.
- Answer to all sub questions should be grouped together.
- Figure to right indicates full marks.
- Assume suitable data wherever necessary and state it clearly.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Questions				Points	CO	BL	PI
1	(a) Discuss hydraulic model testing, laws of similarities, distorted and undistorted models in dimensional analysis.				10	4	2	1.3.1
	(b) Explain Buckingham's $-\pi$ theorem.				10	4	4	1.3.1
2	(a)Explain working of Siphon.				10	1	2	1.3 .1
	(b) Explain pipes in series and pipes in parallel.				10	1	4.	1.3.1
3	(a) Explain briefly the phenomenon of water hammer flow in pipe lines				10	1	4 5	1.3.1
	(b)Two pipes joined in series release water from 55 meter level to 30 meter level. Determine discharge Table 1				10	1	5	2.2.3
	Pipe	Length (m)	$\begin{gathered} \text { Diameter } \\ (\mathrm{mm}) \end{gathered}$	Friction Factor (f)				
	1	300	200	0.019				
	2	250	100	0.021				
	(a)Explain Impulse momentum principle with and an example.				10	2	2	2.1.2
4	(b) Show that the efficiency of a free jet striking normally on a series of flat plates mounted on the periphery of a wheel can never exceeds 50%.				10	2	4	2.3.1
5	(a) Differentiate between Impulse turbine and reaction turbine. Give an example				10	2	2	1.3.1
	(b) Explain in brief performance characteristics curves of hydraulic turbines.				10	2	4	3.1.6
6	(a)Explain working of centrifugal pump. Highlight the importance of priming operation.				10	2	2	2.1.2
	(b) Discuss pumps in series, pumps in parallel and multistage pumps.				10	2	3	3.4.2

7	(a)What do you mean by most economical channel section? Derive the conditions for most economical rectangular channel section.	10	3	4	2.3 .1
(b) Differentiate between uniform and non-uniform flow. Also explain specific energy diagram.	10	3	4	2.3 .1	

END SEMSTER EXAMINATION JULY 2022
Program: Civil Engineering
Course Code: PC- BTC406
Course Name: Transportation Engineering

Notes:

1. Question No 1 is compulsory.
2. Attempt any four questions from remaining five questions.
3. Draw figure or table wherever required.

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMSTER EXAMINATION JULY 2022

End Semester Examination, (May, 2022)

Program: S. Y. B. Tech. Civil Engineering Serum V Course code : BTC 406
Name of the Course : Transportation Engineering

Duration :3 Hours
Maximum Marks : 100
Semester : IV Instructions:
(i) Question Number 1 is compulsory
(ii) Solve any four questions from remaining six questions
(iii) Figures to the right indicate full marks and all questions carry equal marks
(iv) Assume any data if required, stating them clearly
(v) Use graph paper if required

B	Design an exit taxiway joining runway and parallel main taxiway. The total angle of turn is 30° and turning speed $80 \mathrm{~km} / \mathrm{hr}$. draw a neat sketch showing all design elements	$\mathbf{0 8}$	$\mathbf{0 1}$	$\mathbf{0 3}$
Q.4				
A	Discuss with sketch how you will decide the Basic Length of Runway.	$\mathbf{0 8}$	$\mathbf{0 1}$	$\mathbf{0 2}$
	The length of runway under standard condition is 2100 m. the airport is to be provided at an elevation of 380 m above mean sea level. The gradient need to be provided at the site under consideration is given Table 1. The monthly mean temperatures of the atmosphere at a	$\mathbf{1 2}$	$\mathbf{0 1}$	$\mathbf{0 2}$
Barticular site where airport has to be constructed are given in Table 2.				
Apply the necessary correction as per ICAO and FAA and calculate				

Q. 4 (b) Table 1.

End to end runway length (m)	0 to 300	300 to 1200	1200 to 1800	1800 to 2400	2400 to 3500
Gradient (\%)	+1.0	-0.50	+0.50	-0.60	+0.50

Q.4. (b) Table 2.

Month	Mean value of average daily temperature	Mean value of Maximum daily temperature	Month	Mean value of average daily temperature	Mean value of Maximum daily temperature
Jan	3.00	5.50	July	32.6	37.7
Feb	15.5	17.0	Aug	30.5	35.5
Mar	20.0	23.4	Sept	27.4	31.5
Apr	25.6	32.3	Oct	22.8	28.3
May	37.7	47.4	Nov	12.9	18.0
June	40.4	50.60	Dec	6.70	12.3

Q. 6 (c) Table 3.

Wind direction	Duration of wind in percentage		
	$\mathbf{6 . 4} \mathbf{t o \mathbf { 2 5 } \mathbf { ~ k m } / \mathbf { h r }}$	$\mathbf{2 5}$ to $\mathbf{5 0} \mathbf{~ m} / \mathbf{h r}$	$\mathbf{5 0} \mathbf{t 0} \mathbf{7 5} \mathbf{~ k m} / \mathbf{h r}$
S	4.5	1.3	0.1
SSW	3.3	0.8	0
SW	1.8	0.1	0
WSW	2.7	0.3	0
W	2	0.4	0
WNW	5.3	0.1	0
NW	6.3	3.2	0.1
NNW	7.4	7.7	0.3
N	4.6	2.2	0
NNE	2.4	0.9	0
NE	1.1	0.1	0
ENE	3.6	0.4	0
E	1.8	0.3	0
ESE	5.9	2.6	0.2
SE	5.8	2.4	0.2
SSE	6.8	4.9	0.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058 S.Y.A.Tecen (lividsen V RE-EXAMINATION JULY 2022 $1817 / 22$

Program: S. Y. B. Tech. Civil
Course Code: PC - BTC 406
Course Name: Transportation Engineering

Duration: 3 Hours
Maximum Points: 100
Semester: IV

Notes:

(i) Question 1 is compulsory
(ii) Solve any four out of remaining six questions
(iii) Assume suitable data if required

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
RE- EXAMINATION JULY 2022

Q.5.				
(a)	Discuss with neat sketch Runway and Taxiway Marking	$\mathbf{1 0}$	$\mathbf{1}$	$\mathbf{2}$
(b)	Discuss the points you will consider while selecting the site for station.	$\mathbf{1 0}$	$\mathbf{2}$	$\mathbf{3}$
Q.6.				
(a)	Discuss the theoretical nose of crossing and actual nose of crossing	$\mathbf{0 6}$	$\mathbf{2}$	$\mathbf{3}$
(b)	Explain the relationship between number of crossing, permissible speed and angle of crossing.	$\mathbf{0 6}$	$\mathbf{2}$	$\mathbf{3}$
(c)	Draw a neat sketch of double lined turn out showing important component part of point and crossing.	$\mathbf{0 8}$	$\mathbf{2}$	$\mathbf{3}$
Q.7.	Draw a layout plan of Airport and show all the details	$\mathbf{0 6}$	$\mathbf{1}$	$\mathbf{2}$
(a)	Drate\|			
(b)	Aircraft Parking Configuration	$\mathbf{0 6}$	$\mathbf{1}$	$\mathbf{2}$
(c)	The length of runway under standard condition is 1500 m. the airport reference temperature is $25^{\circ} \mathrm{c}$ the airport is to be provided	$\mathbf{0 8}$	$\mathbf{1}$	$\mathbf{2}$
	at elevation of 125 m above mean sea level. Calculate. the corrected length of runway for following data.			

End to end runway length (m)	$\mathbf{0}$ to $\mathbf{3 0 0}$	$\mathbf{3 0 0}$ to $\mathbf{9 0 0}$	$\mathbf{9 0 0}$ to $\mathbf{1 5 0 0}$	$\mathbf{1 5 0 0}$ to $\mathbf{1 8 0 0}$	$\mathbf{1 8 0 0}$ to 2100
Gradient (\%)	+1.0	-0.20	+0.50	+1.0	-0.30

Bharatiya Vidya Bhavan's
 SARDAR PATEL COLLEGE OF ENGINEERING
 (An Autonomous Institution Affiliated to University of Mumbai)

Munshi Nagar Andheri (W) Mumbai 400058

End Semester Examination

Max. Marks: 100

Class: S.Y. B. Tech
Name of the Course: Environmental Engineering I
Course Code: BTC407
Instructions:

DSY July 2022

Q1 is compulsory. Attempt any four questions out of remaining five
Draw neat sketches/diagrams wherever required
Assume suitable data if necessary and state them clearly
Figure on right indicate maximum points for the given question, course outcomes attained, Bloom's Level and Performance Indicators

	loss equation as $\mathrm{v}=0.85 \mathrm{C}_{\mathrm{H}} \mathrm{R}^{0.63} \mathrm{~S}^{0.54}\left(\mathrm{C}_{\mathrm{H}}=130\right.$ dependent on pipe material, R is hydraulic mean depth and for circular section it is $d / 4$; and S is slope of energy line or H / L)				
(b)	Design rapid mix unit for the city of Sarchu for population of 2040 with all checks. Use appropriate value of μ.	(5)	$\begin{gathered} \mathrm{CO1} \\ , \mathrm{CO} \\ 2 \end{gathered}$	3-5	4.2.2
(c)	Lime and soda were used for softening in Sarchu for treatment of following impurities $\mathrm{CaSO}_{4}=120 \mathrm{mg} / \mathrm{L} ; \mathrm{NaCl}=130 \mathrm{mg} / \mathrm{L} ; \mathrm{MgCl}_{2}=80 \mathrm{mg} / \mathrm{L}$. Compute the quantities of chemicals required for Sarchu in year 2040. Assume soda ash and lime purity $\mathbf{8 0 \%}$. (Consider data in Q1(a))	(5)	$\begin{gathered} \mathrm{CO} 3 \\ - \\ \mathrm{CO} 4 \end{gathered}$	3-4	3.2.2
Q3	Answer the following questions	(20)			
(a)	Derive Stoke's law for discrete particle. Design a circular coagulation aided sedimentation tank for Sarchu considering 2040 population and water demand 100 lpcd.	(10)	$\begin{aligned} & \mathrm{CO} 2 \\ & - \\ & \mathrm{CO} 4 \end{aligned}$	2-3	2.2.1
(b)	A cross flow horizontal paddle wheel flocculator is designed for Sarchu city for population of 2040 and water demand 100 lpcd . The mean G value is $30 \mathrm{Sec}^{-1}$ and detention time is 40 min . There are three compartments with $\mathrm{G} 1=50 \mathrm{sec}^{-1}, \mathrm{G} 2=25 \mathrm{Sec}^{-1}$ and $\mathrm{G} 3=15 \mathrm{sec}^{-1}$. Basins width is 15 m . Speed of blades relative to water is 0.75 times peripheral speed of the blade. Cd is 1.5 . Use appropriate value of μ. Find (1) Dimensions of the basin (2) Number of blades and geometry of basin (3) Power requirements (4) Rotational speed of shaft	(10)	$\begin{aligned} & \mathrm{CO} 2 \\ & -\quad \mathrm{CO} 4 \end{aligned}$	3-4	3.2.1
Q4	Answer any two of the following questions	(20)			
(a)	Explain filter troubles. Design rapid sand filter for (size and underdrainage system) for the population for the year 2040 for Sarchu town having water demand $\mathbf{1 0 0}$ lpcd.	(15)	$\begin{aligned} & \hline \mathrm{CO1} \\ & -\quad \mathrm{CO} 4 \\ & \hline \end{aligned}$	3-5	5.3.2
(b)	Explain various disinfectants. Find chlorine consumed in $\mathrm{kg} /$ day and chlorine dosage in mg / L for the city of Sarchu in 2040 if the residual chlorine is $\mathbf{0 . 2}$ mg / L and a chlorine demand is $0.6 \mathrm{mg} / \mathrm{L}$ and average water demand of 100 lped.	(05)	$\begin{aligned} & \mathrm{CO} \\ & , \mathrm{CO} \\ & 4 \end{aligned}$	2-4	5.4.1
Q5	Answer the questions	(20)			
(a)	Deliberate on quality of ground water and surface water and what techniques are used to purify these water types	(05)	CO3	2	2.3.1
(b)	Explain any 3 techniques to treat taste, color and odor in detail	(10)	CO3	2	2.3.2
(c)	Explain the process of removal of hardness from water	(05)	CO3	2,3	4.3.2
Q6	Write notes on any four	(20)	CO2	2	2.3.3
(i)	Electro-dialysis	(05)			
(ii)	Reverse osmosis	(05)			
(iii)	Water distribution systems	(05)			
(iv)	Iron and Manganese in water and their removal	(05)			
(v)	Ion Exchange	(05)			
Q7	Answer the questions				
(A)	Fill in the blanks	(8)	$\mathrm{CO1}$	1	1.2.1

	i. \qquad is universal disinfectant ii. Color and odor can be removed by \qquad and \qquad iii. Typical size of colloidal particles is \qquad to \qquad iv.Filteration removes \qquad and \qquad v. The \qquad valve is used in water distribution system vi. \qquad and \qquad are the coagulants used in water treatment. vii. \qquad and \qquad are two methods to remove salts in water treatment iii. \qquad and \qquad are shallow sedimentation devices ix. \qquad is a naturally occurring ion exchange. x.pH of alkaline water is \qquad .				
(B)	Explain the following (any two)	$\begin{aligned} & 10 \\ & (2 * 5) \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{CO2} \\ \hline \mathrm{CO} \\ \hline \end{array}$	5	5.2.1
(i)	Jar test				
(ii)	MPN Test				
(iii)	Super and de chlorination				

Formula Sheet

$\begin{aligned} & P_{n}=P_{o}\left[1+\frac{r}{100}\right]^{n} \\ & P_{n}=P_{o}+n \bar{x}+\frac{n(n+1)}{2} \bar{y} \\ & \log _{e}\left[\frac{P_{s}-P}{P}\right]-\left[\frac{P_{s}-P_{o}}{P_{o}}\right]=-k P_{s}^{*} t \\ & P_{n}=\left(P_{o}+n \bar{x}\right) \\ & r=\sqrt[t]{r_{1}^{*} r_{2} * r_{3} * \ldots . . . * r_{n}} \end{aligned}$	$\mathrm{Al}=27$ $\mathrm{Ca}=20$ $\mathrm{C}=12$ $\mathrm{O}=16$ $\mathrm{~S}=32$ $\mathrm{Cl}=35.5$ $\mathrm{H}=1$ $\mathrm{Na}=23$ $\mathrm{Fe}=55.5$ $\mathrm{Mg}=24$ $\mathrm{~S}=14$ $\mathrm{H}: \mathrm{D}=2: 1$	$\begin{aligned} & \text { WLR }=\mathrm{Q} / \mathrm{B} \\ & \mathrm{WLR}=\mathrm{Q} / 2 \mathrm{n} R \\ & \mathrm{DT}=\mathrm{V} / \mathrm{Q} \\ & \mathrm{SOR}=12-20 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2} \\ & \mathrm{~V}=0.849 \mathrm{CR}^{0.63} \mathrm{~S}^{0.54} \\ & \text { SOR }=24-30 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2} \\ & \mathrm{WLR}=200 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d} \\ & \mathrm{DT}=20 \text { to } 50 \mathrm{~min} \\ & \text { Minimum distance between successive } \\ & \text { baffle walls } 0.45 \mathrm{~m}(\mathrm{~d}) \\ & \text { Clear opening at end of baffle and basin } \\ & \text { wall }=1.5(\mathrm{~d}) \end{aligned}$
$\mathrm{SA}=$ volume/SOR	$\begin{aligned} & \mathrm{G}=300-700 \mathrm{~s}^{-1} \\ & 0.5 \mathrm{~min} \text { to } 1 \mathrm{~min} \end{aligned}$	$\begin{aligned} & \mathrm{P}=\frac{1}{2} C_{d} \rho \cdot A_{p} \cdot v_{\mathrm{r}}^{3} \\ & C_{d}=1.8 \text { for flat paddles } \\ & \rho=998 \mathrm{~kg} / \mathrm{m}^{3} \\ & v_{r}=(1-0.25) v_{p} \\ & \hline \end{aligned}$
Ratio of length to diameter of lateral ≤ 60 Spacing of laterals $=$ spacing of orifices $=150$ to 300 mm	$\begin{aligned} & \mathrm{v}_{\mathrm{s}}=\frac{1}{18} \frac{g}{v}\left(S_{s}-1\right) \\ & * d^{2} \end{aligned}$	$\mathrm{Q} / \mathrm{A} ; \mathrm{Q} /$ perimeter; $\mathrm{Q} / \mathrm{b} ; \mathrm{V} / \mathrm{Q}$ $\mathrm{V}=\mathrm{D}^{2}(0.011 \mathrm{D}+0.785 \mathrm{H})$
Dia of perforations 5 to 12 mm (spacing 80 mm for 5 and 200 mm for 12 mm) Total area of perforations ≤ 0.5 Total c/s area of laterals Total area of perforation $=0.002$ to 0.003 Entire filter area Area of manifold $=1.5$ to 2 times laterals	$\begin{aligned} & \begin{array}{l} \text { Value } \\ \begin{array}{l} =1.002 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec} \end{array} \\ v_{d} \end{array} \\ & =\sqrt{\left(\frac{8 \beta}{f^{\prime}}\right)\left(S_{s}-1\right) d g} \\ & f^{\prime}=0.025-0.03 \\ & \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	$\begin{aligned} & \text { Rate }=3000-60001 \text { litre } / \mathrm{hr} / \mathrm{m} 2 \\ & \mathrm{G}^{2}=\mathrm{P} / \mu \mathrm{V}=\mathrm{C}_{\mathrm{D}} A \rho v^{3} / 2 \mu \mathrm{~V} \end{aligned}$

Rate of filtration $=300$ to $5001 / \mathrm{hr} / \mathrm{m}^{2}$ Rate of filtration $=3000-60001 / \mathrm{hr} / \mathrm{m}^{2}$ Max. demand $=1.8 \mathrm{Q}$					
$G=\sqrt{\frac{P}{\mu^{*} V}}$					
$\mu=1.0087^{*} 10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$			\quad		
:---	:---				

ALL THE BEST

Bharatiya Vidya Bhavan's
 SARDAR PATEL COLLEGE OF ENGINEERING
 (An Autonomous Institution Affiliated to University of Mumbai)

Munshi Nagar Andheri (W) Mumbai 400058
End Semester Examination
May 2022
Duration: 3 Hrs
Max. Marks: 100
Class: S.Y. B. Tech

Name of the Course: Environmental Engineering I
Course Code: BTC407

Instructions:

Q1 is compulsory. Attempt any four questions out of remaining five
Draw neat sketches/diagrams wherever required
Assume suitable data if necessary and state them clearly
Figure on right indicate maximum points for the given question, course outcomes attained, Bloom's Level and
Performance Indicators

Q1	Answer the following Questions

(a) A town of Khirsu in Uttarakhand has a population of $\mathbf{4 0 , 0 0 0}$ in 2010. The water supply scheme is to be developed for the area for the year 2040. The past census records are provided in table 1. Calculate the population for which water supply system is to be designed using any two appropriate methods for newly developing city.
Table 1.

Year	1970	1980	1990	2000	2010
Population	16,000	20,500	25,000	31,000	40,000

(b) As a city engineer of Khirsu city which water demands are to be considered for a growing city. Further enlist the factors affecting rate of demand.
(c) A bell mouth canal intake is to be designed for Khirsu considering population obtained in Q1 (a) drawing water from a canal which runs for 10 hrs a day with a depth of 2 m . Calculate head loss in intake conduit if treatment works are 0.35 km away. Draw a neat sketch. Consumption of the town is to be considered 120 lpcd . Assume velocity through screens and bell mouth to be less than $15 \mathrm{~cm} / \mathrm{sec}$ and $30 \mathrm{~cm} / \mathrm{sec}$. (for screens consider it is made of vertical iron bars of 20 mm dia and placed at 3 to 5 cm c to c . Design for average discharge. Assume min water level in canal to be 0.4 m below FSL. Use head loss equation as $\mathrm{v}=0.85 \mathrm{C}_{\mathrm{H}} \mathrm{R}^{0.63} \mathrm{~S}^{0.54}\left(\mathrm{C}_{\mathrm{H}}=130\right.$ dependent on pipe material, R is hydraulic mean depth and for circular section it is $d / 4$; and S is slope of energy line or Hl / L)

Q2 Answer the following questions

(a) For the city of Khirsu as mentioned in $\mathrm{Q1}$ (a) there are two sources of water surface water source (Canal). Deliberate on the characteristics of water from
each source. Draw a flowsheet for the treatment of surface water source. It is found that the hardness level is high around $300 \mathrm{mg} / \mathrm{L}$. Suggest additional

Formula Sheet

$\begin{aligned} & P_{n}=P_{o}\left[1+\frac{r}{100}\right]^{n} \\ & P_{n}=P_{o}+n \bar{x}+\frac{n(n+1)}{2} \bar{y} \\ & \log _{e}\left[\frac{P_{s}-P}{P}\right]-\left[\frac{P_{s}-P_{o}}{P_{o}}\right]=-k P_{s}^{*} t \\ & P_{n}=\left(P_{o}+n \bar{x}\right) \\ & r=\sqrt[1]{r_{1}{ }^{*} r_{2}{ }^{*} r_{3} * \ldots . . .{ }^{*} r_{n}} \end{aligned}$	$\begin{aligned} & \mathrm{Al}=27 \\ & \mathrm{Ca}=20 \\ & \mathrm{C}=12 \\ & \mathrm{O}=16 \\ & \mathrm{~S}=32 \\ & \mathrm{Cl}=35.5 \\ & \mathrm{H}=1 \\ & \mathrm{Na}=23 \\ & \mathrm{Fe}=55.5 \\ & \mathrm{Mg}=24 \\ & \mathrm{Si}=14 \\ & \mathrm{H}: \mathrm{D}=2: 1 \end{aligned}$	$\begin{aligned} & \text { WLR }=Q / B \\ & W L R=Q / 2 \pi R \\ & D T=V / Q \\ & S O R=12-20 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2} \\ & V=0.849 \mathrm{CR}^{0.63} \mathrm{~s}^{0.54} \\ & \text { SOR }=24-30 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2} \\ & W L R=200 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d} \\ & D T=20 \text { to } 50 \mathrm{~min} \end{aligned}$ Minimum distance between successive baffle walls $0.45 \mathrm{~m}(\mathrm{~d})$ Clear opening at end of baffle and basin wall $=1.5$ (d)
$\mathrm{SA}=$ volume/SOR	$\begin{aligned} & \mathrm{G}=300-700 \mathrm{~s}^{-1} \\ & 0.5 \mathrm{~min} \text { to } 1 \mathrm{~min} \end{aligned}$	$\begin{aligned} & \mathrm{P}=\frac{1}{2} C_{d} \rho \cdot A_{p} \cdot v_{\mathrm{r}}{ }^{3} \\ & C_{d}=1.8 \text { for flat paddles } \\ & \rho=998 \mathrm{~kg} / \mathrm{m}^{3} \\ & v_{r}=(1-0.25) v_{p} \end{aligned}$
Ratio of length to diameter of lateral ≤ 60 Spacing of laterals $=$ spacing of orifices $=150$ to 300 mm Dia of perforations 5 to 12 mm (spacing 80 mm for 5 and 200 mm for 12mm) Total area of perforations ≤ 0.5 Total c / s area of laterals	$\begin{aligned} & \begin{array}{l} \mathrm{v}_{\mathrm{s}}=\frac{1}{18} \frac{g}{v}\left(S_{s}-1\right) \\ * d^{2} \end{array} \\ & \text { Value of } \begin{array}{l} v=1.002 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec} \\ v_{d} \\ =\sqrt{\left(\frac{8 \beta}{f^{\prime}}\right)\left(S_{s}-1\right) d g} \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{Q} / \mathrm{A} ; \mathrm{Q} / \text { perimeter; } \mathrm{Q} / \mathrm{b} ; \mathrm{V} / \mathrm{Q} \\ & \mathrm{~V}=\mathrm{D}^{2}(0.011 \mathrm{D}+0.785 \mathrm{H}) \\ & \text { Rate }=3000-60001 \mathrm{litr} / \mathrm{hr} / \mathrm{m} 2 \\ & \mathrm{G}^{2}=\mathrm{P} / \mu \mathrm{V}=\mathrm{C}_{\mathrm{D}} \mathrm{~A} \rho v^{3} / 2 \mu \mathrm{~V} \end{aligned}$

Total area of perforation $=0.002$ to 0.003	$f^{\prime}=0.025-0.03$	
Entire filter area		
Area of manifold $=1.5$ to 2 times laterals		
Rate of filtration $=300$ to $5001 / \mathrm{hr} / \mathrm{m}^{2}$		
Rate of filtration $=3000-6000 \mathrm{l} / \mathrm{hr} / \mathrm{m}^{2}$		$G * t=\frac{V}{Q} * \sqrt{\frac{P}{\mu V}}=\frac{\sqrt{P V / \mu}}{Q}$
Max. demand $=1.8 Q$	$P=F_{D} v_{r}$	
$G=\sqrt{\frac{P}{\mu^{* V}}}$		
$\mu=1.0087^{*} 10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$		

ALL THE BEST

Bharatiya Vida Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING
 (An Autonomous Institution Affiliated to University of Mumbai)
 Munshi Nagar Andheri (W) Mumbai 400058

Reexam 2022; July 2022
Max. Marks: 100
Class: S.Y B. Tech

$$
\text { S,Y.A, Teen (civic) sem Duration: } 3 \text { hrs }
$$

Semester: IV
Name of the Course: Environmental Engineering I
Course Code: BTC407

Instructions:

- Attempt 5 questions out of 7.
- Draw neat sketches/diagrams wherever required and wherever design is asked.
- Assume suitable data if necessary and state them clearly
- Figure on right indicate maximum points for the given question, course outcomes attained, Bloom's Level and Performance Indicators
- All the best

(b)	Articulate on factors to be considered while selecting an area for intake and enlist various types of intakes	(05)			
Q4	Answer the questions	(20)	2-4	$\begin{aligned} & 4,5, \\ & 6 \\ & \hline \end{aligned}$	5.1.3
(a)	Explain and Analyze the need of Jar Test	(05)			
(b)	Design a mechanical rapid mix unit for the area of Hrishikesh for 100000 population and 90 lpcd demand. Take value of μ as $1.0089 \mathrm{E}-03$. Computepower requirements and give checks.	(10)			
(c)	Design a plain sedimentation tank for the same population and demand of Hrishikesh	(05)			
Q5	Answer the following questions:	(20)	3-4	5,6	6.1.2
(a)	Articulate on the need of flocculation. Design gravity type of flocculator for same population and demand of Hrishikesh. Assume any other data which is required. Enough space is available	(20)			
Q6	Answer the following questions:	(20)	1-4	5,6	6.3.2
(a)	Design rapid sand filter for the design flow of Hrishikesh(with under drains and wash water troughs)	(20)			
Q7	Answer the following questions	(20)	1-4	$4,5,$	5.3.2
(a)	Develop a plan for disinfection of rural water well. Rationalize your plan.	(05)			
(b)	Illustrate distribution system design with figures, According to you which one is the best for Hrishikesh and why?	(05)			
(c)	Compare techniques to defluoridation. According to you, which is the best technique and why?	(05)			
(d)	Explain filter troubles	(05)			

FORMULA SHEET

$\begin{aligned} & P_{n}=P_{o}\left[1+\frac{r}{100}\right]^{n} \\ & P_{n}=P_{o}+n \bar{x}+\frac{n(n+1)}{2} \bar{y} \\ & \log _{e}\left[\frac{P_{s}-P}{P}\right]-\left[\frac{P_{s}-P_{o}}{P_{o}}\right]=-k P_{s}^{*} t \\ & P_{n}=\left(P_{o}+n \bar{x}\right) \\ & r=\sqrt[4]{r_{1} * r_{2} * r_{3} * \ldots . . . * r_{n}} \end{aligned}$	$\mathrm{Al}=27$ $\mathrm{Ca}=40$ $\mathrm{C}=12$ $\mathrm{O}=16$ $\mathrm{~S}=32$ $\mathrm{Cl}=35.5$ $\mathrm{H}=1$ $\mathrm{Na}=23$ $\mathrm{Fe}=55.5$ $\mathrm{Mg}=24$ $\mathrm{Si}=14$ $\mathrm{H}: \mathrm{D}=2: 1$	$\begin{aligned} & \text { WLR }=\mathrm{Q} / \mathrm{B} \\ & W L R=Q / 2 \pi R \\ & D T=V / Q \\ & S O R=12-20 \mathrm{~m}^{3} / \mathrm{d}^{2} / \mathrm{m}^{2} \\ & \mathrm{~V}=0.849 \mathrm{CR}^{0.33} \mathrm{~S}^{0.54} \\ & \text { SOR }=24-30 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2} \\ & \mathrm{WLR}=200 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d} \\ & \mathrm{DT}=20 \text { to } 50 \mathrm{~min} \end{aligned}$ Minimum distance between successive baffle walls $0.45 \mathrm{~m}(\mathrm{~d})$ Clear opening at end of baffle and basin wall $=1.5$ (d)
$\mathrm{SA}=$ volume/SOR	$\begin{aligned} & \mathrm{G}=300-700 \mathrm{~s}^{-1} \\ & 0.5 \mathrm{~min} \text { to } 1 \mathrm{~min} \end{aligned}$	$\begin{aligned} & \mathrm{P}=\frac{1}{2} C_{d} \rho \cdot A_{p} \cdot \mathrm{v}_{\mathrm{r}}^{3} \\ & C_{d}=1.8 \text { for flat paddles } \\ & \rho=998 \mathrm{~kg} / \mathrm{m}^{3} \\ & v_{r}=(1-0.25) v_{p} \end{aligned}$
Ratio of length to diameter of lateral ≤ 60 Spacing of laterals= spacing of orifices= $=150$ to 300 mm Dia of perforations 5 to 12 mm (spacing 80 mm for 5 and 200 mm for 12 mm) Total area of perforations ≤ 0.5 Total c/s area of laterals Total area of perforation $=0.002$ to 0.003 Entire filter area Area of manifold $=1.5$ to 2 times laterals Rate of filtration $=300$ to $5001 / \mathrm{hr} / \mathrm{m}^{2}$ Rate of filtration $=3000-60001 / \mathrm{hr}^{\prime} / \mathrm{m}^{2}$ Max. demand=1.8 Q	$\begin{aligned} & \begin{array}{l} \mathrm{v}_{\mathrm{s}}=\frac{1}{18} \frac{g}{v}\left(S_{s}-1\right) \\ * d^{2} \end{array} \\ & \text { Value } \quad \begin{array}{l} \text { of } \\ v=1.002 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec} \\ v_{d} \end{array} \\ & =\sqrt{\left(\frac{8 \beta}{f^{\prime}}\right)\left(S_{s}-1\right) d g} \\ & f^{\prime}=0.025-0.03 \\ & \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{Q} / \mathrm{A} ; \mathrm{Q} / \text { perimeter; } \mathrm{Q} / \mathrm{b} ; \mathrm{V} / \mathrm{Q} \\ & \mathrm{~V}=\mathrm{D}^{2}(0.011 \mathrm{D}+0.785 \mathrm{H}) \\ & \text { Rate }=3000-60001 \mathrm{itre} / \mathrm{hr} / \mathrm{m} 2 \\ & \mathrm{G}^{2}=\mathrm{P} / \mu \mathrm{V}=\mathrm{C}_{\mathrm{D}} \mathrm{~A} \rho v^{3} / 2 \mu \mathrm{~V} \end{aligned}$
$\begin{aligned} & G=\sqrt{\frac{P}{\mu^{*} V}} \\ & \mu=1.0087^{*} 10^{-3} \mathrm{Ns} / \mathrm{m}^{2} \end{aligned}$	$P=F_{D}{ }^{*} \nu_{r}$	$G * t=\frac{V}{Q} * \sqrt{\frac{P}{\mu V}}=\frac{\sqrt{P V / \mu}}{Q}$

[^0]:

